To determine whether the exposure to long term enriched environment (EE) would result in a continuous improvement of neurological recovery and ameliora te the loss of brain tissue after traumatic brain injury (TBI) vs. standard housing (SH). Male Sprague-Dawley rats (300-350 g, n=28) underwent lateral fluid percussion brain injury or SHAM operation. One TBI group was held under complex EE for 90 days, the other under SH. Neuromotor and sensorimotor dysfunction and recovery were assessed after injury and at days 7, 15, and 90 via Composite Neuroscore (NS), RotaRod test, and Barnes Circular Maze (BCM). Cortical tissue loss was assessed using serial brain sections. After day 7 EE animals showed similar latencies and errors as SHAM in the BCM. SH animals performed notably worse with differences still significant on day 90 (p<0.001). RotaRod test and NS revealed superior results for EE animals after day 7. The mean cortical volume was significantly higher in EE vs. SH animals (p=0.003). In summary, EE animals after lateral fluid percussion (LFP) brain injury performed sign ificantly better than SH animals after 90 days of recovery. The window of opportunity may be wide and also lends further credibility to the importance of long term interventions in patients suffering from TBI., M. Maegele, M. Braun, A. Wafaisade, N. Schäfer, M. Lippert-Gruener, C. Kreipke, J. Rafols, U. Schäfer, D. N. Angelov, E. K. Stuermer., and Obsahuje bibliografii
After global cerebral hypoxia, many patients are severely disabled even after intensive neurorehabilitation. Secondary mechanisms of brain injury as a result of biochemical and physiological events occur within a period of hours to months, and provide a window of opportunity for therapeutic intervention. Erythropoietin (EPO) has been shown to be neuroprotective in the brain subjected to a variety of injuries. Fifty-nine 3-month-old male Wistar rats were randomly distributed to experimental groups with respect to the housing (enriched environment – EE, standard housing – SH), to hypoxia exposure, and to EPO treatment. An acute mountain sickness model was used as a hypobaric hypoxia simulating an altitude of 8000 m. One half of the animals received erythropoietin injections, while the others were injected saline. Spatial memory was tested in a Morris water maze (MWM). The escape latency and the path length were measured. Better spatial learning in MWM was only seen in the group that received erythropoietin together with enriched environment. EPO administration itself had no influence on spatial memory. The results were very similar for both latencies and path lengths. These results support the idea that after brain injuries, the recovery can be potentiated by EPO administration combined with neurorehabilitation., M. Hralová, ... [et al.]., and Obsahuje seznam literatury
The aim of the present study was to quantify the effect of multisensory rehabilitation on rats’ cognition after an experimental brain trauma and to assess its possible clinical implications. The complex intermittent multisensory rehabilitation consisted of currently used major therapeutic procedures targeted at the improvement of cognitive functions; including multisensory and motor stimulation and enriched environment. We have confirmed this positive effect of early multisensory rehabilitation on the recovery of motor functions after traumatic brain injury. However, we have been able to prove a positive effect on the recovery of cognitive functions only with respect to the frequency of efficient search st rategies in a Barnes maze test, while results for search time and travelled distance were not significantly different between st udy groups. We have concluded that the positive effects of an early treatment of functional deficits are comparable with the clinical results in early neurorehabilitation in human patients after brain trauma. It might therefore be reasonable to apply these experimental results to human medical neurorehabilitation care., M. Lippert-Grüner ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy