The effects of Cu, Cd, and Pb toxicity on photosynthesis in cucumber leaves (Cucumis sativus L.) were studied by the measurements of gas exchange characteristics, chlorophyll (Chl) fluorescence parameters, and Chl content. Concentrations of metals in sequence of 20 μM Cu, 20 and 50 μM Cd, and 1 000 μM Pb decreased the plant dry mass to 50-60 % after 10 d of treatment whereas 50 μM of Cu decreased it to 30 %. The content of Cd in leaves of plants treated with 50 μM Cd was three times higher than the contents of Cu and Pb after plant treatment with 50 μM Cu or 1 000 μM Pb. Hence Cd was transported to leaves much better than Cu and Pb. Nevertheless, the net photosynthetic rate and stomatal conductance in leaves treated with 50 μM Cu or Cd were similarly reduced. Thus, Cu was more toxic than Cd and Pb for photosynthesis in cucumber leaves. None of the investigated metals decreased internal CO2 concentrations. Also the effect of metals on potential efficiency of photosystem 2, PS2 (Fv/Fm) was negligible. The metal dependent reduction of PS2 quantum efficiency (ΦPS2) after plant adaptation in actinic irradiation was more noticeable. This could imply that reduced demand for ATP and NADPH in a dark phase of photosynthesis caused a down-regulation of PS2 photochemistry. Furthermore, in leaves of metal-treated plants the decrease in water percentage as well as lower contents of Chl and Fe were observed. Thus photosynthesis is not the main limiting factor for cucumber growth under Cu, Cd, or Pb stress. and M. Burzyński, G. Kłobus.
Maize plant inbred lines, one Al-sensitive (B-73) and two Al-tolerant (F-2 and L-2039), were grown hydroponically in the presence of 200 µM Al. After 13 d of growth, root and shoot lengths, photosystem 2 (PS2) activity, chlorophyll (Chl) content, 5-aminolevulinic acid (5-ALA) synthesis rate, chlorophyllase (Chlase) activity, and N, Mg, Fe, and Mn contents in leaves were determined. PS2 activity and Chl content were most severely affected by Al in B-73, but F-2 was almost unaffected. This was in accordance with Al-accumulation in the plants. The observed changes in B-73 coincided with 5-ALA synthesis inhibition, Chlase activation, and leaf deprivation of Fe and Mg. In Al-treated L-2039 plants, the leaf Mg and Mn contents were decreased. Also, an excessive Chlase activation was found in Al-treated L-2039, without a substantial Chl loss. This may indicate the activation of different enzyme pools in tolerant and sensitive genotypes under low-stress conditions. and N. Mihailovic, G. Drazic, Z. Vucinic.
Genotypic variations were observed among 6 variants and an indigenous one as a control. An efficient genotype OCD(L) of Ocimum sanctum had the greatest content of chlorophylls [2.15 g kg-1(FM)], Chl a/b ratio of 1.86, net photosynthetic rate of 0.72 mg(CO2) m-2 s-1, and 1.56 % oil formation. Methyl chavicol formed 50.31 % of total oil in OSP-6 genotype, which had also maximum peroxidase activity [ΔOD 2.4 mg-1(protein)] and maximum production of eugenol (30.44 % of total oil). We found an oxido-reducible reaction of peroxidase and high bands of peroxidase isoenzymes in this OSP-6 genotype for the formation of monoterpene essential oil(s) and possibly the major constituents of eugenol through the high production of photosynthates. and A. Misra ... [et al.].
Changes in leaf growth, photosynthetic efficiency, and incorporation pattern of photosynthetically fixed 14CO2 in leaves 1 and 2 from plant apex, in roots, and rhizome induced in Curcuma by growing in a solution culture at Fe concentration of 0 and 5.6 g m-3 were studied. 14C was incorporated into primary metabolites (sugars, amino acids, and organic acids) and secondary metabolites (essential oil and curcumin). Fe deficiency resulted in a decrease in leaf area, its fresh and dry mass, chlorophyll (Chl) content, and CO2 exchange rate at all leaf positions. The rate of 14CO2 fixation declined with leaf position, maximum being in the youngest leaf. Fe deficiency resulted in higher accumulation of sugars, amino acids, and organic acids in leaves at both positions. This is due to poor translocation of metabolites. Roots and rhizomes of Fe-deficient plants had lower concentrations of total photosynthate, sugars, and amino acids whereas organic acid concentration was higher in rhizomes. 14CO2 incorporation in essential oil was lower in the youngest leaf, as well as incorporation in curcumin content in rhizome. Fe deficiency influenced leaf area, its fresh and dry masses, CO2 exchange rate, and oil and curcumin accumulation by affecting translocation of assimilated photosynthates. and Deeksha Dixit, N. K. Srivastava.
Culturing geranium at different doses of Zn from 0-1.0 g m-3 (Zn0 to Zn1.000) revealed that Zn is an antioxidant promoter, apart from its micronutrient essentiality. Zn0.250 was the critical concentration for maximum content (0.21 %) of total essential monoterpene oil(s). At Zn0.005-Zn0.250, net photosynthetic rate, and contents of chlorophyll and essential monoterpene oil(s) were affected. The maximum peroxidase activity was obtained at Zn0.250, with the production of biomolecule geraniol. We found an oxido-reducible reaction of Zn in the formation of monoterpene essential oil(s) and possibly major constituents of geraniol. and A. Misra ... [et al.].