Accurate estimation of precipitation in mountain catchments is challenging due to its high spatial variability and lack of measured ground data. Weather radar can help to provide precipitation estimates in such conditions. This study investigates the differences between measured and radar-estimated daily precipitation in the mountain catchment of the Jalovecký Creek (area 22 km2, 6 rain gauges at altitudes 815–1900 m a.s.l.) in years 2017–2020. Despite good correlations between measured and radar-based precipitation at individual sites (correlation coefficients 0.68–0.90), the radar-estimated precipitation was mostly substantially smaller than measured precipitation. The underestimation was smaller at lower altitude (on average by –4% to –17% at 815 m a.s.l.) than at higher altitudes (–35% to –59% at 1400–1900 m a.s.l.). Unlike measured data, the radar-estimated precipitation did not show the differences in precipitation amounts at lower and higher altitudes (altitudinal differences). The differences between the measured and radar-estimated precipitation were not related to synoptic weather situations. The obtained results can be useful in preparation of more accurate precipitation estimates for the small mountain catchments.
The interception process in subalpine Norway spruce stands plays an important role in the distribution of throughfall. The natural mountain spruce forest where our measurements of throughfall and gross precipitation were carried out, is located on the tree line at an elevation of 1,420 m a.s.l. in the Western Tatra Mountains (Slovakia, Central Europe). This paper presents an evaluation of the interception process in a natural mature spruce stand during the growing season from May to October in 2018–2020. We also analyzed the daily precipitation events within each growing season and assigned to them individual synoptic types. The amount and distribution of precipitation during the growing season plays an important role in the precipitation-interception process, which confirming the evaluation of individual synoptic situations. During the monitored growing seasons, precipitation was normal (2018), sub-normal (2019) and above-normal (2020) in comparison with long-term precipitation (1988–2017). We recorded the highest precipitation in the normal and above-normal precipitation years during the north-eastern cyclonic synoptic situation (NEc). During these two periods, interception showed the lowest values in the dripping zone at the crown periphery, while in the precipitation sub-normal period (2019), the lowest interception was reached by the canopy gap. In the central crown zone near the stem, interception reached the highest value in each growing season. In the evaluated vegetation periods, interception reached values in the range of 19.6–24.1% of gross precipitation total in the canopy gap, 8.3–22.2% in the dripping zone at the crown periphery and 45.7–51.6% in the central crown zone near the stem. These regimes are expected to change in the Western Tatra Mts., as they have been affected by windstorms and insect outbreaks in recent decades. Under disturbance regimes, changes in interception as well as vegetation, at least for some period of time, are unavoidable.
Large-scale forest dieback was reported in recent decades in many parts of the world. In Slovakia, the most endangered species is Norway spruce (Picea Abies). Spruce dieback affects also indigenous mountain forests. We analysed changes in snow cover characteristics in the disturbed spruce forest representing the tree line zone (1420 m a.s.l.) in the Western Tatra Mountains, Slovakia, in five winter seasons 2013–2017. Snow depth, density and water equivalent (SWE) were measured biweekly (10–12 times per winter) at four sites representing the living forest (Living), disturbed forest with dead trees (Dead), forest opening (Open) and large open area outside the forest (Meadow). The data confirmed statistically significant differences in snow depth between the living and disturbed forest. These differences increased since the third winter after forest dieback. The differences in snow density between the disturbed and living forest were in most cases not significant. Variability of snow density expressed by coefficient of variation was approximately half that of the snow depth. Forest dieback resulted in a significant increase (about 25%) of the water amount stored in the snow while the snowmelt characteristics (snowmelt beginning and time of snow disappearance) did not change much. Average SWE calculated for all measurements conducted during five winters increased in the sequence Living < Dead < Meadow < Open. SWE variability expressed by the coefficient of variation increased in the opposite order.
Snow production results in high volume of snow that is remaining on the low-elevation ski pistes after snowmelt of natural snow on the off-piste sites. The aim of this study was to identify snow/ice depth, snow density, and snow water equivalent of remaining ski piste snowpack to calculate and to compare snow ablation water volume with potential infiltration on the ski piste area at South-Central Slovak ski center Košútka (Inner Western Carpathians; temperate zone). Snow ablation water volume was calculated from manual snow depth and density measurements, which were performed at the end of five winter seasons 2010–2011 to 2015–2016, except for season 2013–2014. The laser diffraction analyzes were carried out to identify soil grain size and subsequently the hydraulic conductivity of soil to calculate the infiltration. The average rate of water movement through soil was seven times as high as five seasons’ average ablation rate of ski piste snowpack; nevertheless, the ski piste area was potentially able to infiltrate only 47% of snow ablation water volume on average. Limitation for infiltration was frozen soil and ice layers below the ski piste snowpack and low snow-free area at the beginning of the studied ablation period.