Significant part of our work was developing a new type of CO2 and H2O gas exchange chambers fit for measuring stand patches. Ground areas of six chambers (ranged between 0.044-4.531 m2) constituted a logarithmic series with doubling diameters from 7.5 to 240.0 cm. We demonstrate one of the first results for stand net ecosystem CO2 exchange (NEE) rates and temporal variability for two characteristic Central European grassland types: loess and sand. The measured mean NEE rates and their ranges in these grasslands were similar to values reported in other studies on temperate grasslands. We also dealt with the spatial scale dependence from ecophysiological point of view. Our chamber-series measurement was performed in a perennial ruderal weed association. The variability of CO2-assimilation of this weed vegetation showed clear spatial scale-dependence. We found the lowest variability of the vegetation photosynthesis at the small-middle scales. The results of spatial variability suggest the 0.2832 m2 patch size is the characteristic unit of the investigated weed association and there is a kind of synphysiological minimi-area with characteristic size for each vegetation type. and Sz. Czóbel ... [et al.].
Measurements of CO2 and H2O fluxes were carried out using two different techniques-eddy-covariance (EC) and open system gas exchange chamber (OC)-during two-years' period (2003-2004) at three different grassland sites. OC measurements were made during fourteen measurement campaigns. We found good agreement between the OC and EC CO2 flux values (n = 63, r 2 = 0.5323, OC FCO2 = -0.6408+0.9508 EC FCO2). The OC FH2O values were consistently lower than those measured by the EC technique, probably caused by the air stream difference inside and outside the chamber. Adjusting flow rate within the chamber to the natural conditions would be necessary in future OC measurements. In comparison with EC, the OC proved to be a good tool for gas exchange measurements in grassland ecosystems. and J. Balogh ... [et al.].
CO2 exchange components of a temperate semi-desert sand grassland ecosystem in Hungary were measured 21 times in 2000-2001 using a closed IRGA system. Stand CO2 uptake and release, soil respiration rate (Rs), and micrometeorological values were determined with two types of closed system chambers to investigate the daily courses of gas exchange. The maximum CO2 uptake and release were -3.240 and 1.903 μmol m-2 s-1, respectively, indicating a relatively low carbon sequestration potential. The maximum and the minimum Rs were 1.470 and 0.226 μmol(CO2) m-2 s-1, respectively. Water shortage was probably more effective in decreasing photosynthetic rates than Rs, indicating water supply as the primary driving variable for the sink-source relations in this ecosystem type. and J. Balogh ... [et al.].
Among the most extended ecosystems of the temperate zone, the seminatural, dry grasslands constitute a substantial proportion in the Carpathian Basin. The aim of our present study was to investigate the short-term effect of extensive fertilization on the species composition and CO2 exchange of loess grassland at community level. The in situ investigation of the latter parameter have not been yet carried out in Pannonian loess grasslands. Most of the parameters studied showed a considerable interannual variation both in the fertilized and in the control stands. As a result of the treatment, the average species number of the fertilized stand decreased by 22%, which was more significant in the autumn (26%) than in the spring. Diversity values, including Shannon index and species richness, increased by nearly 1.5 times in the year with adequate rainfall compared with the initial values. In general, species richness and the ratio of dicots decreased, while the ratio of therophytes, alien competitors, and C4 plants increased with the addition of fertilizers. Significant carbon sequestration potential was only detected during wet periods in the fertilized grass. The rate of CO2 uptake was found to be nearly five times higher in the fertilized stand and nearly three times higher in the control stand during the wet year compared with the previous, extremely dry year. The CO2 uptake potential of the fertilized grassland exceeded that of the control stand by 12% in the year with high rainfall, while the rate of CO2 exchange dropped by 50% in the dry year in the fertilized stand. Our study reinforced the idea that the decline in species richness was not necessarily followed by the reduction of stand level carbon uptake in a short period due to an insignificant change in ecophysiological functional groups. and S. Z. Czóbel ... [et al.].