The function of adult neurogenesis in the dentate gyrus is not yet completely understood, though many competing theories have attempted to explain the function of these newly -generated neurons. Most theories give adult neurogenesis a role in aiding known hippocampal/dentate gyrus functions. Other theories offer a novel role for these new cells based on their unique physiological qualities, such as their low excitability threshold. Many behavioral tests have been used to test these theories, but results have been inconsistent and often contradictory. Substantial variability in tests and protocols may be at least partially responsible for the mixed results. On the other hand, conflicting results arising from the same tests can serve as aids in elucidating the function of adult neurogenesis. Here, we offer a hypothesis that considers the cognitive nature of tasks commonly used to assess the function of adult neurogenesis, and introduce a dichotomy between tasks focused on discrimination vs. generalization. We view these two aspects as opposite ends of the continuous spectrum onto which traditional tests can be mapped. We propose that high neurogenesis favors behavioral discrimination while low adult neurogenesis favors behavioral generalization of a knowledge or rule. Since many tasks require both, the effects of neurogenesis could be cancelled out in many cases. Although speculative, we hope that our view presents an interesting and testable hypothesis of the effect of adult neurogenesis in traditional behavioral tasks. We conclude that new, carefully designed behavioral tests may be necessary to reach a final consensus on the role of adult neurogenesis in behavior., A. Pistikova, H. Brozka, A. Stuchlik., and Obsahuje bibliografii
The dentate gyrus of the hippocampus is one of the few places in the brain where neurogenesis occurs in adulthood. Nowadays, an increasing number of children and young adults are affected by hypertension, one of the factors in the development of cerebrovascular diseases and age-related cognitive deficits. Since
these cognitive deficits are often hippocampus-dependent, it is possible that hypertension exerts this effect via decreasing adult neurogenesis which has been shown to be essential for a range
of cognitive tasks. We used spontaneously hypertensive rats, which develop hypertension in the first weeks of life. Half of them were treated with the antihypertensive drug captopril. We found that the drug-induced lowering of blood pressure in this period did not affect the rate of adult neurogenesis. In a second experiment, we used another animal model of hypertension – salt-sensitive and salt-resistant strains of Dahl rats. A high-salt diet induces hypertension in the salt-sensitive strain, but not in the salt-resistant strain. The high-salt diet led to salt-induced hypertension, but did not affect the level of adult neurogenesis in the dentate gyrus of the hippocampus. We
conclude that hypertension does not significantly affect the rate of hippocampal neurogenesis in young adult rats.