This paper is devoted to a new approach to the dynamic response of Soil-Structure System (SSS), the far field of which is meshed by decay or mapped elastodynamic infinite elements, based on scaling modified Bessel shape functions to be calculated. These elements are appropriate for Soil-Structure Interaction problems, solved in time or frequency domain and can be treated as a new form of the recently proposed elastodynamic infinite elements with united shape functions (EIEUSF) infinite elements. Here the time domain form of the equations of motion is demonstrated and used in the numerical example. In the paper only the formulation of 2D horizontal type infinite elements (HIE) is used, but by similar techniques 2D vertical (VIE) and 2D corner (CIE) infinite elements can also be added. Continuity along the artificial boundary (the line between finite and infinite elements) is discussed as well and the application of the proposed elastodynamical infinite elements in the Finite element method is explained in brief. A numerical example shows the computational efficiency and accuracy of the proposed infinite elements, baeed on scaling Bessel shape functions. and Obsahuje seznam literatury
Diffraction is analyzed for oblique propagation of light beam under a large angle. Fresnel diffraction approximation is valid provided the beam is deflected into the direction of oblique propagation, the structure of the diffraction screen is projected onto the plane perpendicular to the propagation direction, and the diffraction pattern is observed in the plane perpendicular to the propagation. The task is illustrated by the diffraction due to a circular aperture. and Je analyzována difrakce pro šikmé šíření světla pod velkým úhlem. Přiblížení Fresnelovou difrakcí je platné za předpokladu , že svazek je odchýlen do směru šikmého šíření, struktura difrakčního stínítka je promítnuta na rovinu kolmou ke směru šíření a difrakční obrazec je pozorován na rovině kolmé k šíření. Úloha je ilustrována difrakcí na kruhové apertuře.