Autologous and allogenic human pericardia used as biomaterials for cardiovascular surgery are traditionally crosslinked with glutaraldehyde. In this work, we have evaluated the resistivity to collagenase digestion and the cytotoxicity of human pericardium crosslinked with various concentrations of glutaraldehyde in comparison with pericardium crosslinked by genipin, nordihydroguaiaretic acid, tannic acid, and in comparison with unmodified pericardium. Crosslinking retained the wavy-like morphology of native pericardium visualized by second harmonic generation microscopy. The collagenase digestion products were analyzed using SDS-PAGE, capillary electrophoresis, and a hydroxyproline assay. Glutaraldehyde and genipin crosslinking protected the native pericardium efficiently against digestion with collagenase III. Only low protection was provided by the other crosslinking agents. The cytotoxicity of crosslinked pericardium was evaluated using xCELLigence by monitoring the viability of porcine valve interstitial cells cultured in eluates from crosslinked pericardium. The highest cell index, reflecting both the number and the shape of the monitored cells was observed in eluates from genipin. Crosslinking pericardium grafts with genipin therefore seems to be a promising alternative procedure to the traditional crosslinking with glutaraldehyde, because it provides similarly high protection against degradation with collagenase, without cytotoxic effects.
Currently-used mechanical and biological heart valve prostheses have several disadvantages. Mechanical prostheses, based on carbon, metallic and polymeric components, require permanent anticoagulation treatment, and their usage often leads to adverse reactions, e.g. thromboembolic complications and endocarditis. Xenogenous and allogenous biological prostheses are associated with immune reaction, thrombosis and degeneration, and thus they have a high rate of reoperation. Biological prostheses of autologous origin, such as pulm onary autografts, often burden the patient with a complicated surgery and the risk of reoperation. Therefore, efforts are being made to prepare bioartificial heart valves with an autologous biological component by methods of tissue engineering. They should be biocompatible, durable, endowed with appropriate mechanical properties and able to grow with a child. For this purpose, scaffolds composed of synthetic materials, such as poly(lactic acid), poly(caprolactone), poly(4-hydroxybutyrate), hydrogels or natural polymers, e.g. collagen, elastin, fibrin or hyaluronic acid, have been seeded with autologous differentiated, progenitor or stem cells. Promising results have been obtained with nanostructured scaffolds, and also with cultivation in special dynamic bioreactors prior to implantation of the bioartificial grafts into an animal organism., E. Filová ... [et al.]., and Obsahuje seznam literatury