To determine the role of postinspiratory inspiratory activity of the diaphragm in the biphasic ventilatory response to hypoxia in unanesthetized rats, we examined diaphragmatic activity at its peak (DI), at the end of expiration (DE), and ventilation in adult unanesthetized rats during poikilocapnic hypoxia (10 % O2) sustained for 20 min. Hypoxia induced an initial increase in ventilation followed by a consistent decline. Tidal volume (VT), frequency of breathing (fR), DI and DE at first increased, then VT and DE decreased, while fR and DI remained enhanced. Phasic activation of the diaphragm (DI - DE) increased significantly at 10, 15 and 20 min of hypoxia. These results indicate that 1) the ventilatory response of unanesthetized rats to sustained hypoxia has a typical biphasic character and 2) the increased end-expiratory activity of the diaphragm limits its phasic inspiratory activation, but this increase cannot explain the secondary decline in tidal volume and ventilation., H. Maxová, M. Vízek., and Obsahuje bibliografii
Time delay in the mediation of ventilation (VE) by arterial CO2 pressure (PaCO2) was studied during recovery from short impulse-like exercises with different work loads of recovery. Subjects performed two tests including 10-s impulse like exercise with work load of 200 watts and 15-min recovery with 25 watts in test one and 50 watts in test two. V . E, end tidal CO2 pressure (PETCO2) and heart rate (HR) were measured continuously during rest, warming up, exercise and recovery. PaCO2 was estimated from PETCO2 and tidal volume (VT). Results showed that predicted arterial CO2 pressure (PaCO2 pre) increased during recovery in both tests. In both tests, VE increased and peaked at the end of exercise. VE decreased in the first few seconds of recovery but started to increase again. The highest correlation coefficient between PaCO2 pre and V . E was obtained in the time delay of 7 s (r=0.854) in test one and in time delays of 6 s (r=0.451) and 31 s (r=0.567) in test two. HR was significantly higher in test two than in test one. These results indicate that PaCO2 pre drives VE with a time delay and that higher work intensity induces a shorter time delay., R. Afroundeh, T. Arimitsu, R. Yamanaka, C. S. Lian, K. Shirakawa, T. Yunoki, T. Yano., and Obsahuje bibliografii