Brazilian native meliponines are currently threatened by increased human impacts. The assessment of their genetic variation by microsatellite DNA markers can assist in the conservation of populations and help in the planning and establishment of efficient management strategies. The purpose of this study was to develop the first set of microsatellite markers for Melipona fasciculata, selected from partial genome assembly of Illumina paired-end reads. Primer pairs were designed for each detected locus at their flanking regions. Bee samples were genotyped from two different populations of Northeastern Brazil for marker characterization and validation. A total of 17 microsatellite loci displayed polymorphism. Mean HE and HO heterozygosities were 0.453 and 0.536, respectively. PIC across all loci ranged from 0.108 to 0.714. A genetic diversity analysis revealed high values for population differentiation estimates (FST = 0.194, RST = 0.230, and Dest = 0.162) within the investigated region. PCoA and Bayesian clustering showed a separation of the species into two distinct clusters. These microsatellite markers have demonstrated strong potential for population-level genetic studies. Moreover, the preliminary analysis of the genetic diversity in M. fasciculata provides provisional evidence of significant population differentiation between the two studied populations., Geice Ribeiro Da Silva, Isis Gomes De Brito Souza, Fabia De Mello Pereira, Bruno De Almeida Souza, Maria Teresa Do Rego Lopes, Paul Bentzen, Fabio Mendonça Diniz., and Obsahuje bibliografii
Honey bees are not only important for honey production but also as pollinators of wild and cultivated plants. The Eastern honeybee (Apis cerana) is more resistant to several pathogens than the Western honeybee (Apis mellifera), and the genomes of two strains of the nominotypical subspecies, A. cerana cerana, northern (Korea) and southern (China) strains, have been sequenced. Apis cerana japonica, another subspecies of A. cerana, shows many specific features (e.g. mildness, low honey production and frequently absconds) and it is important to study the molecular biological and genetic aspects of these features. To accelerate the genetic research on A. cerana japonica, we sequenced the genome of this subspecies. The draft genome sequence of A. cerana japonica presented here is of high quality in terms of basic genome status (e.g. N50 is 180 kbp, total length is 211 Mbp, and largest contig length is 1.31 Mbp) and BUSCO results. The gene set of A. cerana japonica was predicted using AUGUSTUS software and the set of genes was annotated using Blastp and InterProScan, and GO terms were added to each gene. The number of genes is higher than in A. mellifera and in the two strains of A. cerana cerana sequenced previously. A small number of transposable elements and repetitive regions were found in A. cerana japonica, which are also in the genomes of A. mellifera and the northern and southern strains of A. cerana cerana. Apis cerana is resistant to several pathogens that seriously damage A. mellifera. We searched for 41 orthologs related to the IMD and Toll pathways, which have key roles in the immune reaction to invading pathogens. Some orthologs were not identified in the genome of the northern strain of A. cerana cerana. This indicates that the Toll and IMD pathways function in the same way as in A. mellifera and Drosophila melanogaster., Kakeru Yokoi, Hironobu Uchiyama, Takeshi Wakamiya, Mikio Yoshiyama, Jun-Ichi Takahashi, Tetsuro Nomura, Tsutomu Furukawa, Shunsuke Yajima, Kiyoshi Kimura., and Obsahuje bibliografii