Many soils and other porous media exhibit dual- or multi-porosity type features. In a previous study (Seki et al., 2022) we presented multimodal water retention and closed-form hydraulic conductivity equations for such media. The objective of this study is to show that the proposed equations are practically useful. Specifically, dual-BC (Brooks and Corey)-CH (common head) (DBC), dual-VG (van Genuchten)-CH (DVC), and KO (Kosugi)1BC2-CH (KBC) models were evaluated for a broad range of soil types. The three models showed good agreement with measured water retention and hydraulic conductivity data over a wide range of pressure heads. Results were obtained by first optimizing water retention parameters and then optimizing the saturated hydraulic conductivity (Ks) and two parameters (p, q) or (p, r) in the general hydraulic conductivity equation. Although conventionally the tortuosity factor p is optimized and (q, r) fixed, sensitivity analyses showed that optimization of two parameters (p + r, qr) is required for the multimodal models. For 20 soils from the UNSODA database, the average R2 for log (hydraulic conductivity) was highest (0.985) for the KBC model with r = 1 and optimization of (Ks, p, q). This result was almost equivalent (0.973) to the DVC model with q = 1 and optimization of (Ks, p, r); both were higher than R2 for the widely used Peters model (0.956) when optimizing (Ks, p, a, ω). The proposed equations are useful for practical applications while mathematically being simple and consistent.
Application of compost is known to improve the hydraulic characteristics of soils. The objective of this study was to examine the seasonal and short-term effects of solid waste compost amendments on selected hydrophysical properties of soil during dry and rainy seasons and to explore any negative impacts of municipal solid waste compost (MSWC) amendments on soil hydrophysical environment concerning Agriculture in low-country wet zone, Sri Lanka. Eight (T1–T8) MSWC and two (T9, T10) agricultural-based waste compost (AWC) samples were separately applied in the field in triplicates at 10 and 20 Mg ha–1 rates, with a control (T0). Field measurements (initial infiltration rate, Ii; steady state infiltration rate, ISS; unsaturated hydraulic conductivity, k; sorptivity, SW) were conducted and samples were collected (0–15 cm depth) for laboratory experiments (water entry value, hwe; potential water repellency: measured with water drop penetration time, WDPT) before starting (Measurement I) and in the middle of (Measurement II) the seasonal rainfall (respectively 5 and 10 weeks after the application of compost). The difference in the soil organic matter (SOM) content was not significant between the dry and rainy periods. All the soils were almost non-repellent (WDPT = <1–5 s). The hwe of all the samples were negative. In the Measurement I, the Ii of the T0 was about 40 cm h–1, while most treatments show comparatively lower values. The ISS, SW, and k of compost amended samples were either statistically similar, or showed significantly lower values compared with T0. It was clear that all the surface hydraulic properties examined in situ (Ii, ISS, SW) were higher in the Measurement I (before rainfall) than those observed in the Measurement II (after rainfall). Water potential differences in soils might have affected the surface hydrological properties such as SW. However, water potential differences would not be the reason for weakened ISS and k in the Measurement II. Disruption of aggregates, and other subsequent processes that would take place on the soil surface as well as in the soil matrix, such as particle rearrangements, clogging of pores, might be the reason for the weakened ISS and k in the Measurement II. Considering the overall results of the present study, compost amendments seemed not to improve or accelerate but tend to suppress hydraulic properties of soil. No significant difference was observed between MSWC and AWC considering their effects on soil hydraulic properties. Application of composts can be considered helpful to slower the rapid leaching by decreasing the water movements into and within the soil.