Ultrakrátké světelné pulzy, tedy pulzy pikosekundové nebo kratší časové délky, jsou velmi významné ve vědě i ve stále větším počtu aplikací. Uvádíme základní vlastnosti světelných pulzů, způsob jejich generace lasery se synchronizací módů a připomínáme některé oblasti jejich použití., Ultra-short light pulses, with pulses of a picosecond or shorter duration, are very important in science as well as in a growing number of applications. We review the basic properties of these light pulses and techniques for their generation by modelocked lasers. We also describe some of their application areas., Petr Malý., and Obsahuje seznam literatury
Nedávno se třem skupinám ve Spojených státech podařilo zpomalit světelný puls na neuvěřitelných několik metrů za vteřinu a posléze jej dokonce na okamžik zastavit. Pokusy byly prováděny ve třech různých prostředích: v Boseově-Einsteinově kondenzátu sodíkových atomů, v parách atomů rubidia a v krystalu křemičitanu yttritého, dopovaném praseodymem. K zastavování světla se využívá jevu elektromagneticky indukované průhlednosti, kdy za určitých rezonančních podmínek jeden, tzv. kontrolní laserový puls vytváří společně s druhým zkušebním pulsem průhledné prostředí s obrovskou disperzí indexu lomu. Ta je pak vlastní příčinou radikálního snížení grupové rychlosti zkušebního světelného pulsu, který s koherentními kvantovými stavy atomů vytváří "propletený" stav, tzv. tmavý polariton, šířící se beze ztrát prostředím. Rychlost tmavého polaritonu je možné ovládat kontrolním pulsem. Polariton lze zastavit, přičemž je celý zkušební puls převeden do koherentních kvantových stavů atomů a posléze je možné zkušební puls v původní podobě obnovit. V tomto přehledu jsou odvozeny rovnice, které tyto jevy popisují, jednotlivé pokusy jsou podrobně diskutovány a jsou zmíněna možná využití zastavování světla., Vladimír Dvořák., and Obsahuje bibliografie