OAGK is a keyword extraction/generation dataset consisting of 2.2 million abstracts, titles and keyword strings from cientific articles. Texts were lowercased and tokenized with Stanford CoreNLP tokenizer. No other preprocessing steps were applied in this release version. Dataset records (samples) are stored as JSON lines in each text file.
This data is derived from OAG data collection (https://aminer.org/open-academic-graph) which was released under ODC-BY licence.
This data (OAGK Keyword Generation Dataset) is released under CC-BY licence (https://creativecommons.org/licenses/by/4.0/).
If using it, please cite the following paper:
Çano, Erion and Bojar, Ondřej, 2019, Keyphrase Generation: A Text Summarization Struggle, 2019 Annual Conference of the North American Chapter of the Association for Computational Linguistics, June 2019, Minneapolis, USA
OAGKX is a keyword extraction/generation dataset consisting of 22674436 abstracts, titles and keyword strings from scientific articles. The texts were lowercased and tokenized with Stanford CoreNLP tokenizer. No other preprocessing steps were applied in this release version. Dataset records (samples) are stored as JSON lines in each text file.
The data is derived from OAG data collection (https://aminer.org/open-academic-graph) which was released under ODC-BY license.
This data (OAGKX Keyword Generation Dataset) is released under CC-BY license (https://creativecommons.org/licenses/by/4.0/).
If using it, please cite the following paper:
Çano Erion, Bojar Ondřej. Keyphrase Generation: A Multi-Aspect Survey. FRUCT 2019, Proceedings of the 25th Conference of the Open Innovations Association FRUCT, Helsinki, Finland, Nov. 2019
To reproduce the experiments in the above paper, you can use the first 100000 lines of part_0_0.txt file.