Aphis fabae and Myzus persicae (Hemiptera: Aphididae) are insect pests that damage sugar beet and bean crops. Both are responsible for losses in yield and transmission of viral diseases, and may be present on the same host at the same time. Three parasitoid species, Aphidius colemani, Lysiphlebus testaceipes and Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae) have the potential to be used as biological control agents against at least one of these species of aphids. As a first step prior to the implementation of a biological control program, our aim was to understand the host selection behaviour of the parasitoids, particularly when both aphids are present. We recorded the host acceptance (number of insertions of the ovipositor / number of antennal contacts), suitability (number of mummies / the number of insertions of the ovipositor) and emergence (number of adults emerging from mummies) of these three aphid parasitoids when parasitizing the two aphids. We also analyzed the effect of the host plant on the host preference of the parasitoid. Females of each parasitoid species (n = 15) were exposed to 20 aphids of A. fabae or M. persicae, or a mixture of these two species of aphids, for 15 min, on a leaf disc of each of the two host plants, sugar beet and bean. Higher host acceptance and suitability were recorded for A. colemani attacking both species of aphid: A. fabae (43 and 46%) and M. persicae (43 and 46%) on beet and bean plants respectively, compared to L. testaceipes and L. fabarum. L. testaceipes and L. fabarum showed a clear preference for A. fabae. L. fabarum accepted M. persicae on both plants only when it was mixed with A. fabae, probably due to a confusion effect. We found that the host plant played a significant role in host acceptance, host suitability. We conclude that A. colemani is the better of the three parasitoids studied for the biological control in bean, and particularly, sugar beet crops. and Loulou Albittar, Mohannad Ismail, Claude Bragard, Thierry Hance.
On the basis of values from literature it was established that photosynthetically used radiation (PUR) amounts to 6 % of absorbed radiant energy in cabbage (producer of high yields), 3.5 % in sugar beet leaves, and 2.6 % in tobacco leaves. PUR of these species did not depend on irradiance in a wide range from 22 to 287 W m-2.