We consider a special dilatant fluid model for which the apparent viscosity can be expressed as a polynomial in the second scalar invariant of the rate of strain tensor. The model has been used to investigate the steady plane Couette flow of a non-Newtonian fluid through a channel with suction, assumed small, at the lower porous wall. The introduction of a similarity transformation in the perturbed governing partial differential equations of the flow leads to a system of coupled non-linear ordinary differential equations. The solutions of these equations have been obtained analytically as a power series in the suction parameter . The combined effects of the non-Newtonian and the suction parameters on the longitudinal and transverse velocity profiles as well as the skin friction, have been discussed. The validity of the analytical solutions has also been checked with the corresponding numerical solutions for small values of the governing parameters. and Štúdia sa zaoberá sa špeciálnym modelom nenewtonskej tekutiny, pre ktorú sa môže skutočná viskozita vyjadriť vo forme polynomickej závislosti na druhom skalárnom invariante tenzora rýchlosti deformácie. Model bol využitý na štúdium ustáleného Couetteho rovinného prúdenia nenewtonskej tekutiny v kanáli so saním cez porézne steny. Zavedenie transformácie podobnosti do lineanizovaných parciálnych diferenciálnych rovníc vedie k systému obyčajných nelineárnych diferenciálnych rovníc. Ich riešenie sme získali vo forme potenčného radu od sacieho parametra λ. Analyzovali sme vplyv rozťažnosti tekutiny a sacieho parametra na pozdĺžny a priečny rýchlostny profil, ako aj na povrchové trenie. Platnosť analytického riešenia sme porovnali s numerickým riešením pre malé hodnoty použitých parametrov.
This research is a follow-up to the previous research which was dealing with the creation of the simulation of the vocal cords function using FEM. This paper focuses on how the vocal cords function is affected by Bernoulli's effect, while using model [1] is used. It is well known, that Bernoulli's effect is connected with the suction in the air space between the vocal cords. This is caused by the high air flow in glottis. The fastest and easiest way how to eliminate the influence of this effect is the change of every negative air pressure on the vocal cords to zero (i.e. the pressure applied as the loads on the vocal cords). Authors of some vocal cords models presume that Bernoulli's effect is the main force causing vocal cords vibrations. Changing the negative pressures to zero should cause that the vocal cords would not vibrate. However, the results of this research show the opposite. and Obsahuje seznam literatury