A two dimensional stochastic differential equation is suggested as a stochastic model for the Kermack-McKendrick epidemics. Its strong (weak) existence and uniqueness and absorption properties are investigated. The examples presented in Section 5 are meant to illustrate possible different asymptotics of a solution to the equation.
We study the system of PDEs describing unsteady flows of incompressible fluids with variable density and non-constant viscosity. Indeed, one considers a stress tensor being a nonlinear function of the symmetric velocity gradient, verifying the properties of $p$-coercivity and $(p-1)$-growth, for a given parameter $p > 1$. The existence of Dirichlet weak solutions was obtained in [2], in the cases $p \ge 12/5$ if $d = 3$ or $p \ge 2$ if $d = 2$, $d$ being the dimension of the domain. In this paper, with help of some new estimates (which lead to point-wise convergence of the velocity gradient), we obtain the existence of space-periodic weak solutions for all $p \ge 2$. In addition, we obtain regularity properties of weak solutions whenever $p \ge 20/9$ (if $d = 3$) or $p \ge 2$ (if $d = 2$). Further, some extensions of these results to more general stress tensors or to Dirichlet boundary conditions (with a Newtonian tensor large enough) are obtained.
We study a linear system of equations arising from fluid motion around a moving rigid body, where rotation is included. Originally, the coordinate system is attached to the fluid, which means that the domain is changing with respect to time. To get a problem in the fixed domain, the problem is rewritten in the coordinate system attached to the body. The aim of the present paper is the proof of the existence of a strong solution in a weighted Lebesgue space. In particular, we prove the existence of a global pressure gradient in L2.
We consider the theory of very weak solutions of the stationary Stokes system with nonhomogeneous boundary data and divergence in domains of half space type, such as $\mathbb R^n_+$, bent half spaces whose boundary can be written as the graph of a Lipschitz function, perturbed half spaces as local but possibly large perturbations of $\mathbb R^n_+$, and in aperture domains. The proofs are based on duality arguments and corresponding results for strong solutions in these domains, which have to be constructed in homogeneous Sobolev spaces. In addition to very weak solutions we also construct corresponding pressure functions in negative homogeneous Sobolev spaces.