Water-filled tree holes are abundant microhabitats in forests worldwide and are inhabited by specialized communities of invertebrates. Despite their importance, the temporal dynamics of communities within and between years are largely unknown. Here, I present a case study on the phenology of insect larvae in two holes in a beech tree (lower and upper canopy) located in southern Germany over a period of three years. I asked whether water temperature and the characteristics of insect larvae at the community and population levels are similar in periodicity every year and whether they differ in the lower and upper canopy. The water temperature in tree holes differed greatly from air temperature, and this effect was more pronounced in the lower than in the upper canopy, which resulted in a lower probability of drying out occurring in the lower canopy. This was associated with a higher species richness in the lower canopy and greater abundance of drought tolerant species in the upper canopy. There was a significant periodicity in larval abundance, biomass, species richness and body size distribution of abundant species in both tree holes, but it was not seasonal. This result indicates that unpredictable drying out of tree holes are more important drivers of tree hole community dynamics than changes in water temperature. The community of larvae in the tree hole in the upper canopy lagged behind that in the lower canopy, which indicates that most species mainly colonize the more stable microhabitats in the lower canopy. Hopefully this case study will encourage future larger-scale phenological studies to test (1) whether the patterns observed in this study can be generalized over larger spatial scales and (2) the relative importance of abiotic and biotic drivers of the dynamics of communities in tree holes., Martin M. Gossner., and Obsahuje bibliografii
A bend or any another pipe component disturbs solids transport in pipes. Longitudinal pressure profiles downstream of such a component may show a stationary transient harmonic wave, as revealed by a recent settling slurry laboratory experiment. Therefore the fundamental transient response of the two-layer model for fully stratified flow is investigated as a first approach. A linear stability analysis of the sliding bed configuration is conducted. No stationary transient harmonic waves are found in this analysis, but adaptation lengths for exponential recovery are quantified. An example calculation is given for a 0.1 m diameter pipeline. Also consequences for long stretches of pipe line emerged. A so far undiscovered exclusion zone is found in the I-V diagram. This exclusion zone is situated adjacent to the deposit limit velocity locus curve. This simplified physical system reveals that flow velocities should be taken about 10% greater than the calculated maximum deposit limit velocity for stable converging flow.