For n=2m\geqslant 4, let \Omega\in \mathbb{R}^{n} be a bounded smooth domain and N\subset \mathbb{R}^{L} a compact smooth Riemannian manifold without boundary. Suppose that \left \{ uk \right \}\in W^{m,2}\left ( \Omega ,N \right ) is a sequence of weak solutions in the critical dimension to the perturbed m-polyharmonic maps \frac{{\text{d}}}{{{\text{dt}}}}\left| {_{t = 0}{E_m}({\text{II}}(u + t\xi )) = 0} \right with Ωk → 0 in W^{m,2}\left( \Omega ,N \right )* and {u_k} \rightharpoonup u weakly in W^{m,2}\left( \Omega ,N \right ). Then u is an m-polyharmonic map. In particular, the space of m-polyharmonic maps is sequentially compact for the weak- W^{m,2} topology., Shenzhou Zheng., and Obsahuje seznam literatury