The taxonomy of myxosporeans was traditionally dependent solely upon the spore morphological and morphometric data. Intensive reports of intraspecific morphological variation, however, are increasingly challenging the taxonomic approaches for myxosporeans. In the present work, the morphological pleomorphism of myxospores of Myxobolus drjagini (Akhmerov, 1954) was observed. More interestingly, all of these pleomorphic myxospores occurred in the same plasmodium of M. drjagini, which refutes the previous hypothesis that morphological variation of M. drjagini was derived from its responses to differences in nutrition and immunological responses associated with different host tissues. Bearing the intraspecific morphometric and morphotype variation in mind, the combination of morphological, ecological and molecular data should be applied to the species identification and delimitation for myxosporeans. This is the first reported myxobolid species with high pleomorphic myxospores which are present in the same plasmodium.
Echinactinomyxon-type actinospores were found in a mixed-species oligochaete culture originating from the Temperate Water Fish Hatchery near Budapest, Hungary. On the basis of DNA sequence analysis, the actinospores were identified as Myxobolus pavlovskii (Akhmerov, 1954), the 18S rDNA sequence from myxospores of which is available in GenBank. Silver carp Hypophthalmichthys molitrix (Valenciennes) fry specimens were successfully infected by cohabitation with the echinactinomyxon-releasing oligochaetes, which confirmed the molecular data congruence. The echinactinomyxons and the myxospores that developed in the gills of exposed fish fry were analysed morphologically and on DNA basis. The infected gill tissue was examined histologically. As typical characters of M. pavlovskii, numerous small plasmodia were observed in the epithelia of gill lamellae. Plasmodia contained thousands of myxospores with polar capsules unequal in size and with large intercapsular processes. The 18S rDNA sequence from actinospores and those from myxospores originating from the experimentally infected fish were identical. The oligochaete species releasing actinospores was morphologically determined as Limnodrilus sp. This is the first record of an echinactinomyxon as an alternate stage within the genus Myxobolus.