Plants of an Egyptian cultivar of wheat (Triticum aestivum L. cv. Giza 63) were exposed in open-top chambers (OTCs) for 8 h d-1 for up to 75 d to a factorial combination of two levels of salinity (0 and 50 mM NaCl) and two levels of O3 (filtered air and 50 mm3 m-3). Exposure to 50 mm3 m-3 O3 significantly decreased stomatal conductance (gs), net photosynthetic rate (PN), and chlorophyll (Chl) content by 20, 25, and 21 %, respectively. This reduction resulted in a change in assimilate allocation in favour of shoot growth leading to a decrease in root to shoot ratio and eventually to a decrease in relative growth rate (RGR) of both root and shoot. There was a very large reduction in yield parameters, especially in the number of ears/plant and 1 000-grain mass. Soil salinity significantly reduced PN and gs by 17 and 15 %, respectively, while Chl content was increased by 17 %. Root growth was decreased leading to an increase in root/shoot ratio. Yield parameters were decreased due to salt stress. There was antagonistic interaction between salinity (50 mM NaCl) and O3 (50 mm3 m-3) showing that salinity effectively protects against the adverse effects of O3 by increasing gs during O3 fumigation.