In NLP Centre, dividing text into sentences is currently done with
a tool which uses rule-based system. In order to make enough training
data for machine learning, annotators manually split the corpus of contemporary text
CBB.blog (1 million tokens) into sentences.
Each file contains one hundredth of the whole corpus and all data were
processed in parallel by two annotators.
The corpus was created from ten contemporary blogs:
hintzu.otaku.cz
modnipeklo.cz
bloc.cz
aleneprokopova.blogspot.com
blog.aktualne.cz
fuchsova.blog.onaidnes.cz
havlik.blog.idnes.cz
blog.aktualne.centrum.cz
klusak.blogspot.cz
myego.cz/welldone
COSTRA 1.0 is a dataset of Czech complex sentence transformations. The dataset is intended for the study of sentence-level embeddings beyond simple word alternations or standard paraphrasing.
The dataset consist of 4,262 unique sentences with average length of 10 words, illustrating 15 types of modifications such as simplification, generalization, or formal and informal language variation.
The hope is that with this dataset, we should be able to test semantic properties of sentence embeddings and perhaps even to find some topologically interesting “skeleton” in the sentence embedding space.