A general synchronization method is proposed for a class of nonlinear chaotic systems involving uncertain parameters and nonlinear transmitted signals. Under some mild conditions, it shows that the class of nonlinear chaotic systems can be treated as linear time-varying systems driven by the additive white noise contaminated at the receiver, or the observed output. Synchronization can be achieved by using Kalman filtering technology. We present some sufficient conditions under which the states of the driven system are able to track the states of the drive system asymptotically, and good tracking performance can be obtained in the presence of the additive white noise involved in the observed output.
In this paper, a modified version of the Chaos Shift Keying (CSK) scheme for secure encryption and decryption of data will be discussed. The classical CSK method determines the correct value of binary signal through checking which initially unsynchronized system is getting synchronized. On the contrary, the new anti-synchronization CSK (ACSK) scheme determines the wrong value of binary signal through checking which already synchronized system is loosing synchronization. The ACSK scheme is implemented and tested using the so-called \emph{generalized Lorenz system} (GLS) family making advantage of its special parametrization. Such an implementation relies on the parameter dependent synchronization of several identical copies of the GLS obtained through the observer-based design for nonlinear systems. The purpose of this paper is to study and compare two different methods for the anti-synchronization detection, including further underlying theoretical study of the GLS. Resulting encryption schemes are also compared and analyzed with respect to both the encryption redundancy and the encryption security. Numerical experiments illustrate the results.