In the class of real hypersurfaces M²n−¹ isometrically immersed into a nonflat complex space form Mn(c) of constant holomorphic sectional curvature c (≠ 0) which is either a complex projective space ℂPn(c) or a complex hyperbolic space ℂHn(c) according as c > 0 or c < 0, there are two typical examples. One is the class of all real hypersurfaces of type (A) and the other is the class of all ruled real hypersurfaces. Note that the former example are Hopf manifolds and the latter are non-Hopf manifolds. In this paper, inspired by a simple characterization of all ruled real hypersurfaces in Mn(c), we consider a certain real hypersurface of type (A2) in ℂPn(c) and give a geometric characterization of this Hopf manifold., Byung Hak Kim, In-Bae Kim, Sadahiro Maeda., and Obsahuje bibliografii
We give a characterization of totally $\eta $-umbilical real hypersurfaces and ruled real hypersurfaces of a complex space form in terms of totally umbilical condition for the holomorphic distribution on real hypersurfaces. We prove that if the shape operator $A$ of a real hypersurface $M$ of a complex space form $M^n(c)$, $c\neq 0$, $n\geq 3$, satisfies $g(AX,Y)=ag(X,Y)$ for any $X,Y\in T_0(x)$, $a$ being a function, where $T_0$ is the holomorphic distribution on $M$, then $M$ is a totally $\eta $-umbilical real hypersurface or locally congruent to a ruled real hypersurface. This condition for the shape operator is a generalization of the notion of $\eta $-umbilical real hypersurfaces.