Chronic airflow limitation, caused by chronic obstructive pulmonary disease (COPD) or by asthma, is believed to change the shape and the position of the diaphragm due to an increase in lung volume. We have made a comparison of magnetic resonance imaging (MRI) of diaphragm in supine position with pulmonary functions, respiratory muscle function and exercise tolerance. We have studied the differences between patients with COPD, patients with asthma, and healthy subjects. Most interestingly we found the lung hyperinflation leads to the changes in diaphragmatic excursions during the breathing cycle, seen in the differences between the maxim al expiratory diaphragm position (DPex) in patients with COPD and control group (p=0.0016) . The magnitude of the diaphragmatic dysfunction was significantly related to the airflow limitation expressed by the ratio of forced expiratory volume in 1 s to slow vital capacity (FEV 1 /SVC) , (%, p=0.0007); to the lung hyperinflation expressed as the ratio of the residual volume to total lung capacity (RV/TLC), (%, p=0.0018) and the extent of tidal volume constrain expressed as maximal tidal volume (V Tmax ), ([l], p=0 .0002); and the ratio of tidal volume to slow vital capacity (VT/SVC), (p=0.0038) during submaximal exercise. These results suggest that diaphragmatic movement fails to contribute sufficiently to the change in lung volume in emphysema. Tests of respiratory muscle function were related to the position of the diaphragm in deep expiration, e.g. neuromuscular coupling (P 0.1 /VT) (p=0.0232). The results have shown that the lung volumes determine the position of the diaphragm and function of the respiratory muscles. Chronic airflow limitation seems to change the position of the diaphragm, which thereafter influences inspiratory muscle function and exercise tolerance. There is an apparent relationship between the position of the diaphragm and the pulmonary functions and exercise tolerance., L. Hellebrandová, J. Chlumský, P. Vostatek, D. Novák, Z. Rýznarová, V. Bunc., and Obsahuje bibliografii
The objective of this prospective double-blind study was to determine whether postoperative residual paralysis (PORP) after pancuronium or vecuronium results in hypoxemia and hypercapnia in the immediate admission period to the recovery ward. Eighty-three consecutive surgical patients received balanced or intravenous anesthesia with pancuronium for operations lasting longer than one hour or vecuronium for those lasting less than 60 min, both combined with neostigmine at the end of anesthesia. Standard clinical criteria assessed neuromuscular function intraoperatively. Postoperatively, we determined neuromuscular function (acceleromyography with supramaximal train-of-four (TOF) stimulation of the ulnar nerve, and a 5-s head lift) and pulmonary function (pulse oximetry: SpO2, and blood gas analysis: SaO2, PaCO2). We defined PORP as a TOF-ratio 70 %, hypoxemia as a postoperative SpO2³ 5 % below the pre-anesthestic level together with a postoperative SaO293 %, and hypercapnia as a PaCO2³ 46 mm Hg. Among the 49 pancuronium and 27 vecuronium patients studied, the PORP rates were 20 % in the pancuronium group and 7 % in the vecuronium group (p>0.05). Hypoxemia and hypercapnia occurred more often in pancuronium patients with PORP than in those without PORP namely 60 % vs. 10% (p<0.05) and 30 % vs. 8 % (p>0.05), respectively. We conclude that PORP after pancuronium is a significant risk factor for hypoxemia., U. Bissinger, F. Schimek, G. Lenz., and Obsahuje bibliografii
Chronic obstructive pulmonary disease (COPD) is a progressive and disabling disease that has been associated with aging. Several factors may potentially impair performance during exercise in elderly patients with COPD. This study was conducted to evaluate what characteristics related to lung function, peripheral muscle strength and endurance can predict the performance of elderly patients with COPD during cardiopulmonary exercise testing (CPET). Forty elderly patients with COPD underwent resting lung function tests, knee isokinetic dynamometry, and CPET. Three models were developed to explain the variability in peak oxygen uptake (VO2 peak) after controlling for age as an independent confounder. The pulmonary function model showed the highest explained variance (65.6 %); in this model, ventilation distribution (p<0.001) and pulmonary diffusion (0.013) were found to be independent predictors. Finally, the models that included the muscle strength and endurance variables presented explained variances of 51 % and 57.4 %, respectively. In these models that involved muscular dysfunction, however, only the endurance variables were found to be independent predictors (p<0.05). In conclusion, ventilation distribution and pulmonary diffusion, but not the degree of airway obstruction, independently predict CPET performance in elderly patients with COPD. In addition, peripheral muscle endurance, but not strength, also predicts CPET performance in these subjects.