Prolonged cultivation of separated rat lung mast cells (LMC) in vitro is necessary to better investigate a possible role of LMC in different stages of tissue remodeling induced by hypoxia. Rat lung mast cells (LMC) were sepa rated using a protocol including an improved proteolytic extracti on and two subsequent density gradient separations on Ficoll-P aque PLUS and a new generation of Percoll, i.e. Percoll PLUS. Instead of usual isotonic stock Percoll solution, an alternative “asymptotically isotonic” stock solution was more successful in our density separation of LMC on Percoll PLUS. Separated cells were cultivated for six days in media including stem cell factor, interleu kins IL-3 and IL-6, and one of two alternative mixtures of antibi otics. These cultivations were performed without any contaminatio n and with only rare changes in cell size and morphology. Model co-cultivation of two allogenic fractions of LMC often caused considerable rapid changes in cell morphology and size. In contrast to these observations no or rare morphological changes were found after cultivation under hypoxic conditions. In conclusions, we modified separation on Percoll PLUS to be widely used, altered LMC separation with respect to purposes of long-lasti ng cultivation and observed some model morphological changes of LMC., J. Kubrycht ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy