The influence of hormonal preparations of FSH in a dose of 24 mg (480 IU) on levels of catecholamine (dopamine, norepinephrine and epinephrine) and the activity of their degradation enzyme monoamine oxidase (MAO) in the hypothalamic regions regulating the reproductive system of sheep (area preoptica, eminentia mediana, corpus mamillare) and pineal gland were investigated in the ocstrous period employing radiochemical methods. The administration of FSH resulted in significant (p<0.001) increases of dopamine levels in the area preoptica and corpus mamillare of the hypothalamus of sheep as compared to control groups with synchronized oestrus. Hormonal stimulation with FSH increased the levels of hypothalamic norepinephrine in the areas studied and these differences were significant in the eminentia mediana (p<0.05) and corpus mamillare (p<0.05). Significant (p<0.001) changes in epinephrine levels were found in the corpus mamillare and area preoptica (p<0.05). Our results indicate that the administration of FSH caused the most pronounced decrease of MAO activity in corpus mamillare (p<0.001). The pineal gland reacted to the hormonal preparation by decreased levels of norepinephrine and dopamine (p<0.001) and by an increase in MAO activity (p<0.01). We suggest that FSH administration affects catecholamine levels and the activity of monoamine oxidase in the studied areas of the brain of sheep by means of a feedback mechanism.
Male Wistar rats adapted to an artificial light-dark regimen (12 h light: 12 h darkness) were whole-body irradiated with a dose of 14.35 Gy of gamma rays. Irradiation, sham-irradiation and decapitation 30, 60 and 120 min after the exposure were performed between 2000 h and 0100 h in the darkness. The serotonin N-acetyltransferase activity (NAT), the concentration of melatonin, dopamine, norepinephrine and epinephrine were measured in the pineal gland. The serum levels of melatonin and corticosterone were also determined. Ionizing radiation did not change the activity of the key enzyme of melatonin synthesis, NAT, but decreased the concentration of pineal melatonin. The concentration of pineal dopamine and norepinephrine decreased 30 and 120 min after exposure, while the concentration of epinephrine was elevated 30 min after irradiation, though later it was markedly decreased. The serum melatonin level was not changed, but an increase in corticosterone level was observed. In the early period after the exposure, a decrease in pineal melatonin occurred, accompanied by a decrease in pineal catecholamines. On the contrary, in the phase of developed radiation injury the signs of increased melatonin synthesis were observed on days 3 and 4 after the exposure (Kassayova et al. 1993a). The underlying mechanisms require further research.
The circadian rhythms of many behavioral and physiological functions are regulated by the major circadian pacemaker in the suprachiasmatic nucleus. Long-term opiate addiction and drug withdrawal may affect circad ian rhythmicity of various hormones or the sleep/activity pattern of many experimental subjects; however, limited research has been done on the long -term effects of sustained opiate administration on the intrinsic rhythmicity in the suprachiasmatic nucleus and pineal gland. Here we compared the effects of repeated daily treatment of rats with morphine or methadone and subsequent naloxone-precipitated withdrawal on the expression of the Per1, Per2, and Avp mRNAs in the suprachiasmatic nucleus and on arylalky lamine N-acetyltransferase activity in the pineal gland. We revealed that 10-day administration and withdrawal of both these drugs failed to affect clock genes and Avp expression in the SCN. Our results indicate that opioid-induced changes in behavioral a nd physiological rhythms originate in brain structures downstream of the suprachiasmatic nucleus regulatory output pathway. Furthermore, we observed that acute withdrawal from methadone markedly extended the period of high night AA -NAT activity in the pine al gland. This suggests that withdrawal from methadone, a widely used drug for the treatment of opioid dependence, may have stronger impact on melatonin synthesis than withdrawal from morphine., D. Pačesová, J. Novotný, Z. Bendová., and Obsahuje bibliografii
The influence of hormonal superovulation preparations of FSH (450 IU) or PMSG (1500 IU), on the levels of catecholamines (dopamine, norepinephrine and epinephrine) was studied in the oestrus period using radioenzymatic methods. The administration of FSH caused a significant increase in the concentrations of norepinephrine (NE) and epinephrine (EPI) in eminentia mediana (EM) of sheep (p<0.001 and p<0.01, respectively). The pituitary gland exhibited an increase in the level of norepinephrine after administration PMSG while no marked changes were recorded for epinephrine and dopamine (DA). The administration of FSH affected the increase in pituitary epinephrine (p<0.01). The hormonal stimulation by FSH resulted in a marked decrease of dopamine (p<0.05) as well as in , a significant increase of norepinephrine (p<0.05) and epinephrine (p<0.05) in the epiphysis. The comparison of the effect of hormonal preparations on the changes in catecholamine levels showed that the effect of FSH was observed mostly in eminentia mediana and the pituitary gland while that of PMSG was recorded in the epiphysis.