Assessment of soil water repellency (SWR) was conducted in the decomposed organic floor layer (duff) and
in the mineral soil layer of two Mediterranean pine forests, one in Italy and the other in Spain, by the widely-used water
drop penetration time (WDPT) test and alternative indices derived from infiltration experiments carried out by the
minidisk infiltrometer (MDI). In particular, the repellency index (RI) was calculated as the adjusted ratio between
ethanol and water soil sorptivities whereas the water repellency cessation time (WRCT) and the specifically proposed
modified repellency index (RIm) were derived from the hydrophobic and wettable stages of a single water infiltration
experiment. Time evolution of SWR and vegetation cover influence was also investigated at the Italian site. All indices
unanimously detected severe SWR conditions in the duff of the pine forests. The mineral subsoils in the two forests
showed different wettability and the clay-loam subsoil at Ciavolo forest was hydrophobic even if characterized by organic
matter (OM) content similar to the wettable soil of an adjacent glade. It was therefore assumed that the composition
rather than the total amount of OM influenced SWR. The hydraulic conductivity of the duff differed by a factor of 3.8–
5.8 between the two forested sites thus influencing the vertical extent of SWR. Indeed, the mineral subsoil of Javea
showed wettable or weak hydrophobic conditions probably because leaching of hydrophobic compounds was slowed or
prevented at all. Estimations of SWR according to the different indices were in general agreement even if some discrepancies
were observed. In particular, at low hydrophobicity levels the SWR indices gathered from the MDI tests were able
to signal sub-critical SWR conditions that were not detected by the traditional WDPT index. The WRCT and modified
repellency index RIm yielded SWR estimates in reasonable agreement with those obtained with the more cumbersome RI
test and, therefore, can be proposed as alternative procedures for SWR assessment.
A closed CO2 and temperature-controlled, long-term chamber system has been developed and set up in a typical boreal forest of Scots pine (Pinus sylvestris L.) near the Mekrijärvi Research Station (62°47'N, 30°58'E, 145 m above sea level) belonging to the University of Joensuu, Finland. The main objectives of the experiment were to provide a means of assessing the medium to long-term effects of elevated atmospheric CO2 concentration (EC) and temperature (ET) on photosynthesis, respiration, growth, and biomass at the whole-tree level and to measure instantaneous whole-system CO2 exchange. The system consists of 16 chambers with individual facilities for controlling CO2 concentration, temperature, and the combination of the two. The chambers can provide a wide variety of climatic conditions that are similar to natural regimes. In this experiment the target CO2 concentration in the EC chambers was set at a fixed constant of 700 µmol mol-1 and the target air temperature in the ET chambers to track the ambient temperature but with a specified addition. Chamber performance was assessed on the base of recordings covering three consecutive years. The CO2 and temperature control in these closed chambers was in general accurate and reliable. CO2 concentration in the EC chambers was within 600-725 µmol mol-1 for 90 % of the exposure time during the "growing-season" (15 April - 15 September) and 625-725 µmol mol-1 for 88 % of the time in the "off-season" (16 September - 14 April), while temperatures in the chambers were within ±2.0 °C of the ambient or target temperature in the "growing season" and within ±3.0 °C in the "off season". There were still some significant chamber effects. Solar radiation in the chambers was reduced by 50-60 % for 82 % of the time in the "growing season" and 55-65 % for 78 % of the time in the "off season", and the relative humidity of the air was increased by 5-10 % for 72 % of the time in the "growing season" and 2-12 % for 91 % of the time in the "off season". The crown architecture and main phenophase of the trees were not modified significantly by enclosure in the chambers, but some physiological parameters changed significantly, e.g., the radiant energy-saturated photosynthesis rate, transpiration rate, maximum photochemical efficiency of photosystem 2, and chlorophyll content. and S. Kellomäki, Kai-Yun Wang, M. Lemettinen.