Elevated CO2 concentration (700 cm3 m-3, EC) inhibited chill-dependent (7 °C) depression of net photosynthetic rate of two maize hybrids with different sensitivity to low temperature. The rate of superoxide radical formation in leaves, leaf membrane injury, and the decrease in maximal quantum efficiency of photosystem 2 were successfully diminished by the treatment. The protective effect of EC toward stress conditions was prolonged at the recovery phase (20 °C). The genotypic impact on studied parameters was also notable. and R. Bączek-Kwinta, J. Kościelniak.
Leaf gas-exchange responses to shadefleck-sunfleck and sun-cloud transitions were determined for in situ Cycas micronesica K.D. Hill plants on the island of Guam to add cycads to the published gymnosperm data. Sequential sunfleck-shadefleck transitions indicated understory leaves primed rapidly but open field leaves primed slowly. Time needed to reach 90% induction of net CO2 assimilation (PN) was 2.9 min for understory leaves and 13.9 min for open field leaves. Leaf responses to sun-cloud transitions exhibited minimal adjustment of stomatal conductance, so PN rapidly returned to precloud values following cloud-sun transitions. Results indicate bi-directional leaf acclimation behavior enables mature C. micronesica trees to thrive in deep understory conditions in some habitats and as emergent canopy trees in other habitats. These data are the first nonconifer gymnosperm data; the speed of gas-exchange responses to rapid light transitions was similar to some of the most rapid angiosperm species described in the literature., T. E. Marler., and Obsahuje bibliografii
We aimed to find out relations among nonphotochemical quenching (NPQ), gross photosynthetic rate (PG), and photoinhibition during photosynthetic light induction in three woody species (one pioneer tree and two understory shrubs) and four ferns adapted to different light regimes. Pot-grown plants received 100% and/or 10% sunlight according to their light-adaptation capabilities. After at least four months of light acclimation, CO2 exchange and chlorophyll fluorescence were measured simultaneously in the laboratory. We found that during light induction the formation and relaxation of the transient NPQ was closely related to light intensity, light-adaption capability of species, and PG. NPQ with all treatments increased rapidly within the first 1-2 min of the light induction. Thereafter, only species with high PG and electron transport rate (ETR), i.e., one pioneer tree and one mild shade-adapted fern, showed NPQ relaxing rapidly to a low steady-state level within 6-8 min under PPFD of 100 μmol(photon) m-2 s-1 and ambient CO2 concentration. Leaves with low PG and ETR, regardless of species characteristics or inhibition by low CO2 concentration, showed slow or none NPQ relaxation up to 20 min after the start of low light induction. In contrast, NPQ increased slowly to a steady state (one pioneer tree) or it did not reach the steady state (the others) from 2 to 30 min under PPFD of 2,000 μmol m-2 s-1. Under high excess of light energy, species adapted to or plants acclimated to high light exhibited high NPQ at the initial 1 or 2 min, and showed low photoinhibition after 30 min of light induction. The value of fastest-developing NPQ can be quickly and easily obtained and might be useful for physiological studies., S.-L. Wong, M.-Y. Huang, C.-W. Chen, J.-H. Weng., and Obsahuje bibliografii
Chloroplast PSII photochemical efficiency is upregulated more rapidly than CO2 assimilation during photosynthesis induction, suggesting the existence of other electron sinks than that of CO2 assimilation. We hypothesized that the mitochondrial alternative oxidase (AOX) pathway could be such a sink. Inhibition of the AOX restricted light activation of the malate-oxaloacetate shuttle and caused an excessive reduction of PSI acceptor side and substantial accumulation of QA-, hindering the photosynthetic linear electron transport rate (ETR) and leading to an imbalance between light energy absorption and exploitation during photosynthetic induction. ETR limitation also restricted the formation of thylakoid pH gradient, evidenced by a decreased de-epoxidation of the xanthophyll cycle, thus preventing nonphotochemical quenching. Delayed CO2 assimilation due to thylakoid pH gradient restriction was partially reversed by exogenous ATP application. The AOX pathway acts as a photosynthetic electron sink, protecting the photosynthetic apparatus against photoinhibition and accelerating the induction of CO2 assimilation during photosynthetic induction in Rumex K-1 leaves.
To analyze acclimation of Euterpe edulis seedlings to changes in light availability, we transferred three-year-old seedlings cultivated for six months under natural shade understory [= 1.3 mol(photon) m-2 d-1] to a forest gap [= 25.0 mol(photon) m-2 d-1]. After the transfer, changes in chlorophyll fluorescence and leaf gas-exchange parameters, as well as in the light-response curves of photosynthesis and photosynthetic induction parameters, were analyzed during the following 110 days. Simultaneously measured photosynthetic characteristics in the shaded seedlings grown in understory served as the control. Despite the fact that the understory seedlings were under suboptimal conditions to achieve their light-saturated net photosynthetic rate (PNmax), light-response curves and photosynthetic induction parameters indicated that the species had the low respiration rate and a fast opening of stomata in response to the intermittent occurrence of sunflecks, which exerted a feed-forward stimulation on PNmax. Sudden exposure to high light induced photoinhibition during the first week after the transfer of seedlings to gap, as it was shown by the abrupt decline of the maximal quantum yield of PSII photochemistry (Fv/Fm). The photoinhibition showed the time-dependent dynamics, as the Fv/Fm of the seedlings transferred to the forest gap recovered completely after 110 days. Furthermore, the net photosynthetic rate increased 3.5-fold in relation to priorexposure values. In summary, these data indicated that more than 21 days was required for the shade-acclimated seedlings to recover from photoinhibition and to relax induction photosynthetic limitations following the sudden exposure to high light. Moreover, the species responded very quickly to light availability; it highlights the importance of sunflecks to understory seedlings., A. O. Lavinsky, F. P. Gomes, M. S. Mielke, S. França., and Obsahuje bibliografii
Photosynthetic induction responses to a sudden increase in photosynthetic photon flux density (PPFD) from lower background PPFD (0, 25, 50, and 100 μmol m-2 s-1) to 1 000 μmol m-2 s-1 were measured in leaves of Fagus crenata, Acer rufinerve Siebold & Zucc., and Viburnum furcatum growing in a gap and understory of a F. crenata forest in the Naeba mountains. In the gap, A. rufinerve exhibited more than 1.2-fold higher maximum net photosynthetic rate (PNmax) than F. crenata and V. furcatum. Meanwhile, in the understory F. crenata exhibited the highest PNmax among the three species. The photosynthetic induction period required to reach PNmax was 3-41 min. The photosynthetic responses to increase in PPFD depended on the background PPFD before increase in PPFD. The induction period required to reach PNmax was 2.5-6.5-fold longer when PPFD increased from darkness than when PPFD increased from 100 μmol m-2 s-1. The induction period was correlated with initial PN and stomatal conductance (gs) relative to maximum values before increase in PPFD. The relationship was similar between the gap and the understory. As the background PPFD increased, the initial PN and gs increased, indicating that the degrees of biochemical and stomata limitations to dynamic photosynthetic performance decreased. Therefore, photosynthetic induction responses to increase in PPFD became faster with the increasing background PPFD. The differences in time required to reach induction between species, as well as between gap and understory, were mainly due to the varying of relative initial induction states in PN and gs at the same background PPFD. and M. Naramoto, Q. Han, Y. Kakubari.