For any graph G, let V (G) and E(G) denote the vertex set and the edge set of G respectively. The Boolean function graph B(G, L(G), NINC) of G is a graph with vertex set V (G) ∪ E(G) and two vertices in B(G, L(G), NINC) are adjacent if and only if they correspond to two adjacent vertices of G, two adjacent edges of G or to a vertex and an edge not incident to it in G. For brevity, this graph is denoted by B1(G). In this paper, we determine domination number, independent, connected, total, point-set, restrained, split and non-split domination numbers in the complement B1(G) of B1(G) and obtain bounds for the above numbers.
We give a necessary and sufficient condition for the existence of perfect matchings in a plane bipartite graph in terms of elementary edge-cut, which extends the result for the existence of perfect matchings in a hexagonal system given in the paper of F. Zhang, R. Chen and X. Guo (1985).
A graph is nonsingular if its adjacency matrix $A(G)$ is nonsingular. The inverse of a nonsingular graph $G$ is a graph whose adjacency matrix is similar to $A(G)^{-1}$ via a particular type of similarity. Let $\mathcal{H}$ denote the class of connected bipartite graphs with unique perfect matchings. Tifenbach and Kirkland (2009) characterized the unicyclic graphs in $\mathcal{H}$ which possess unicyclic inverses. We present a characterization of unicyclic graphs in $\mathcal{H}$ which possess bicyclic inverses., Swarup Kumar Panda., and Obsahuje bibliografii