The influence of particle shape (aspect ratio) on the intrinsic viscosity is investigated, taking three Czech kaolin products (floated kaolins) as paradigmatic examples. An average aspect ratio is obtained for each kaolin from a comparison of particle size measurements using sedimentation and laser diffraction. The intrinsic viscosity is obtained by a multistep procedure: firstly, flow curves are recorded for each kaolin with the optimum deflocculant concentration, secondly, the (apparent) relative viscosities read off from the flow curves are plotted against the kaolin volume fraction and, thirdly, these data are fitted using the Krieger relation to obtain the intrinsic viscosity in the asymptotic dilute limit. It is shown that the data determined with the method proposed are within the Jeffery and Brenner bounds and that an average aspect ratio of about 20 (17-22) results in an intrinsic viscosity of about 10 (7-13), compared to 2.5 for spherical particles. Although currently th e measurement precision is not suffi cient to seriously assess the influence of Brownian motion, the method can principally be used to predict the intrinsic viscosity when the average aspect ratio of the system (and its particle size distribution) is known, and vice versa., Eva Gregorová, Willi Pabst and Jean-Baptiste Bouchet., and Obsahuje bibliografické odkazy
The aim of this paper is to define the correlation between the geometry of grains and saturated hydraulic conductivity of soils. The particle shape characteristics were described by the ζ0C index (Parylak, 2000), which expresses the variability of several shape properties, such as sphericity, angularity and roughness.
The analysis was performed on samples of four soils, which were characterised by the same grain size distribution and extremely different particle structure. The shape characteristics varied from ideally spherical, smooth grains (glass microbeads
GM) to highly irregular and rough particles (fly ash FA).
For each soil, laboratory tests of saturated hydraulic conductivity (constant head test CHT and falling head test FHT) were performed. Additionally, an empirical analysis of effective pore diameter was conducted with use of the analytical models developed by Pavchich (Wolski, 1987) and Indraratna and Vafai (1997). The models were modified by introducing the ζ0C index.
Experiments have shown that saturated hydraulic conductivity depends on grains shape and surface roughness. This parameter decreases with the increase in the irregularity of soil particles. Moreover, it was proven that the ζ0C reflects the relationship between effective pore diameter and grain shape characteristics.