Over the last two decades my colleagues and I have assembled the literature on a good percentage of most of the coccidians (Conoidasida) known, to date, to parasitise: Amphibia, four major lineages of Reptilia (Amphisbaenia, Chelonia, Crocodylia, Serpentes), and seven major orders in the Mammalia (Carnivora, Chiroptera, Lagomorpha, Insectivora, Marsupialia, Primates, Scandentia). These vertebrates, combined, comprise about 15,225 species; only about 899 (5.8%) of them have been surveyed for coccidia and 1,946 apicomplexan valid species names or other forms are recorded in the literature. Based on these compilations and other factors, I extrapolated that there yet may be an additional 31,381 new apicomplexans still to be discovered in just these 12 vertebrate groups. Extending the concept to all of the other extant vertebrates on Earth; i.e. lizards (6,300 spp.), rodents plus 12 minor orders of mammals (3,180 spp.), birds (10,000 spp.), and fishes (33,000 spp.) and, conservatively assuming only two unique apicomplexan species per each vertebrate host species, I extrapolate and extend my prediction that we may eventually find 135,000 new apicomplexans that still need discovery and to be described in and from those vertebrates that have not yet been examined for them! Even doubling that number is a significant underestimation in my opinion.
Faecal samples from 162 wild animals were collected from 32 distinct sites of Łęczyńsko-Włodawskie Lakeland (eastern Poland). The presence of Giardia duodenalis (Stiles, 1902) was assessed by a Direct Fluorescence Assay (DFA) and by Polymerase Chain Reaction (PCR) and sequencing of a fragment of the beta-giardin gene. DFA showed the presence of cysts of G. duodenalis in 12 of 162 faecal samples (7%), namely in four wild boars (15%), four foxes (19%), two roe deer (4%), and two wolves (29%). PCR identified 34 of the 162 (21%) samples as positive, including 11 wild boars (41%), five red deer (18%), 11 roe deer (23%), four moose (17%), two wolves (29%) and a single sample from the European badger. Thus, PCR detected a significantly higher number of infection than DFA (P = 0.0005). However, 14 of 34 PCR products could not be sequenced because of their insufficient amount; the low number of cysts, poor conservation of the faeces or presence of PCR inhibitors may have contributed to weak DNA amplification. Sequence analysis of the remaining 20 products showed the presence of assemblage B in wild boars, red deer and roe deer, whereas samples from wolves were identified as assemblage D. This is the first detection of assemblage B in wild boars and deer. As assemblage B has zoonotic potential, wild animals from eastern Poland may act as reservoirs of cysts of G. duodenalis infectious for humans., Krzysztof Stojecki, Jacek Sroka, Simone M. Cacciò, Tomasz Cencek, Jacek Dutkiewicz, Paweł Kusyk., and Obsahuje bibliografii