The structural reorganization of pea thylakoid systems in response to osmotic shock in a wide range of temperatures (36-70°C) was studied. At temperatures 40-46°C, the configuration of thylakoid systems changed from a flattened to a nearly round, whereas thylakoids themselves remained compressed. The percentage of thylakoids stacked into grana at 44°C decreased from 71 % in the control to 40 % in experimental samples, reaching 59 % at 48°C. At 44°C and above, thylakoid systems ceased to respond to the osmotic shock by disordering, in contrast to what happened at lower temperatures (36-43°C) and in the control, and retained the configuration inherent in thylakoid systems at these temperatures. At 50°C and above, the packing of thylakoids in grana systems changed, and thylakoids formed extended strands of pseudograna. Simultaneously, single thylakoids formed a network of anastomoses through local fusions. At temperatures of 60-70°C, thylakoid systems appeared as spherical clusters of membrane vesicles with different degree of separation.