The numerical range of an n × n matrix is determined by an n degree hyperbolic ternary form. Helton-Vinnikov confirmed conversely that an n degree hyperbolic ternary form admits a symmetric determinantal representation. We determine the types of Riemann theta functions appearing in the Helton-Vinnikov formula for the real symmetric determinantal representation of hyperbolic forms for the genus g = 1. We reformulate the Fiedler-Helton-Vinnikov formulae for the genus g = 0, 1, and present an elementary computation of the reformulation. Several examples are provided for computing the real symmetric matrices using the reformulation., Mao-Ting Chien, Hiroshi Nakazato., and Obsahuje seznam literatury
The aim of the paper is to propose a definition of numerical range of an operator on reflexive Banach spaces. Under this definition the numerical range will possess the basic properties of a canonical numerical range. We will determine necessary and sufficient conditions under which the numerical range of a composition operator on a weighted Hardy space is closed. We will also give some necessary conditions to show that when the closure of the numerical range of a composition operator on a small weighted Hardy space has zero.