A variety is called normal if no laws of the form $s=t$ are valid in it where $s$ is a variable and $t$ is not a variable. Let $L$ denote the lattice of all varieties of monounary algebras $(A,f)$ and let $V$ be a non-trivial non-normal element of $L$. Then $V$ is of the form ${\mathrm Mod}(f^n(x)=x)$ with some $n>0$. It is shown that the smallest normal variety containing $V$ is contained in ${\mathrm HSC}({\mathrm Mod}(f^{mn}(x)=x))$ for every $m>1$ where ${\mathrm C}$ denotes the operator of forming choice algebras. Moreover, it is proved that the sublattice of $L$ consisting of all normal elements of $L$ is isomorphic to $L$.