In the paper we consider the difference equation of neutral type (E) ∆3 [x(n) − p(n)x(σ(n))] + q(n)f(x(τ (n))) = 0, n ∈ N(n0 ), where p, q : N(n0 ) → R+; σ, τ : N → Z, σ is strictly increasing and lim n→∞ σ(n) = ∞; τ is nondecreasing and lim n→∞ τ (n) = ∞, f : R → R, xf(x) > 0. We examine the following two cases: 0 < p(n) ≤ λ ∗ < 1, σ(n) = n − k, τ (n) = n − l, and 1 < λ∗ ≤ p(n), σ(n) = n + k, τ (n) = n + l, where k, l are positive integers. We obtain sufficient conditions under which all nonoscillatory solutions of the above equation tend to zero as n → ∞ with a weaker assumption on q than the usual assumption ∑∞ i=n0 q(i) = ∞ that is used in literature.
Asymptotic properties of the half-linear difference equation (∗) ∆(an|∆xn| α sgn ∆xn) = bn|xn+1| α sgn xn+1 are investigated by means of some summation criteria. Recessive solutions and the Riccati difference equation associated to (∗) are considered too. Our approach is based on a classification of solutions of (∗) and on some summation inequalities for double series, which can be used also in other different contexts.
Consider the forced higher-order nonlinear neutral functional differential equation \[ \frac{{\mathrm d}^n}{{\mathrm d}t^n}[x(t)+C(t) x(t-\tau )]+\sum ^m_{i=1} Q_i(t)f_i(x(t-\sigma _i))=g(t), \quad t\ge t_0, \] where $n, m \ge 1$ are integers, $\tau , \sigma _i\in {\mathbb{R}}^+ =[0, \infty )$, $C, Q_i, g\in C([t_0, \infty ), {\mathbb{R}})$, $f_i\in C(\mathbb{R}, \mathbb{R})$, $(i=1,2,\dots ,m)$. Some sufficient conditions for the existence of a nonoscillatory solution of above equation are obtained for general $Q_i(t)$ $(i=1,2,\dots ,m)$ and $g(t)$ which means that we allow oscillatory $Q_i(t)$ $(i=1,2,\dots ,m)$ and $g(t)$. Our results improve essentially some known results in the references.
In this paper we consider the equation \[y^{\prime \prime \prime} + q(t){y^{\prime }}^{\alpha} + p(t) h(y) =0,\] where $p,q$ are real valued continuous functions on $[0,\infty)$ such that $q(t) \ge 0$, $p(t) \ge 0$ and $h(y)$ is continuous in $(-\infty ,\infty)$ such that $h(y)y>0$ for $y \ne 0$. We obtain sufficient conditions for solutions of the considered equation to be nonoscillatory. Furthermore, the asymptotic behaviour of these nonoscillatory solutions is studied.