Let $\tilde{f}$, $\tilde{g}$ be ultradistributions in $\mathcal Z^{\prime }$ and let $\tilde{f}_n = \tilde{f} * \delta _n$ and $\tilde{g}_n = \tilde{g} * \sigma _n$ where $\lbrace \delta _n \rbrace $ is a sequence in $\mathcal Z$ which converges to the Dirac-delta function $\delta $. Then the neutrix product $\tilde{f} \diamond \tilde{g}$ is defined on the space of ultradistributions $\mathcal Z^{\prime }$ as the neutrix limit of the sequence $\lbrace {1 \over 2}(\tilde{f}_n \tilde{g} + \tilde{f} \tilde{g}_n)\rbrace $ provided the limit $\tilde{h}$ exist in the sense that \[ \mathop {\mathrm N\text{-}lim}_{n\rightarrow \infty }{1 \over 2} \langle \tilde{f}_n \tilde{g} +\tilde{f} \tilde{g}_n, \psi \rangle = \langle \tilde{h}, \psi \rangle \] for all $\psi $ in $\mathcal Z$. We also prove that the neutrix convolution product $f \mathbin {\diamondsuit \!\!\!\!*\,}g$ exist in $\mathcal D^{\prime }$, if and only if the neutrix product $\tilde{f} \diamond \tilde{g}$ exist in $\mathcal Z^{\prime }$ and the exchange formula \[ F(f \mathbin {\diamondsuit \!\!\!\!*\,}g) = \tilde{f} \diamond \tilde{g} \] is then satisfied.
The incomplete Gamma function γ(α, x) and its associated functions γ(α, x+) and γ(α, x−) are defined as locally summable functions on the real line and some convolutions and neutrix convolutions of these functions and the functions x r and x r − are then found.