In this paper, stability of linear neutral systems with distributed delay is investigated. A bounded half circular region which includes all unstable characteristic roots, is obtained. Using the argument principle, stability criteria are derived which are necessary and sufficient conditions for asymptotic stability of the neutral systems. The stability criteria need only to evaluate the characteristic function on a straight segment on the imaginary axis and the argument on the boundary of a bounded half circular region. If there are no characteristic roots on the imaginary axis, the number of unstable characteristic roots can be obtained. The results of this paper extend those in the literature. Numerical examples are given to illustrate the presented results.
The problem of finding an input-output representation of a nonlinear state space system, usually referred to as the state elimination, plays an important role in certain control problems. Though, it has been shown that such a representation, at least locally, always exists for both the systems with and without delays, it might be a neutral input-output differential equation in the former case, even when one starts with a retarded system. In this paper the state elimination is therefore extended further to nonlinear neutral state-space systems, and it is shown that also in such a case an input-output representation, at least locally, always exists. In general, it represents a neutral system again. Computational aspects related to the state elimination problem are discussed as well.