The maximum size of ingested ball-shaped particles was determined in three species of adult dung feeding beetle: Anoplotrupes (Geotrupes) stercorosus and Geotrupes spiniger (Geotrupidae, Geotrupinae) and Sphaeridium lunatum (Hydrophilidae, Sphaeridiinae). Maximum diameters were 40-65 µm, 60-75 µm and 16-19 µm in A. stercorosus, G. spiniger and S. lunatum, respectively, and it was concluded that these beetles feed in the same way as found in previous studies on coprophagous scarabaeids (Scarabaeinae and Aphodiinae). Coarse particles, mainly indigestible plant fragments, are rejected by an unknown filtering mechanism, and only very small particles are actually ingested. The two geotrupids, however, tolerate somewhat larger particles than do scarabaeines of similar size. This may reflect a lower degree of specialisation towards dung feeding in the geotrupids than in the scarabaeines. In several ways, the mouthparts of the coprophagous Scarabaeidae, Geotrupidae and Hydrophilidae show essentially the same morphological modifications that must be adaptations for dung feeding. For the hydrophilid (Sphaeridium), such modifications are described for the first time. They include asymmetric mandibular molars (right convex, left concave), fitting exactly into each other, with highly specialised surfaces that may concentrate the food prior to ingestion by squeezing fluid out of it. Other examples are the conjunctives (scarabaeids and geotrupids) or similar structures (the hydrophilid) and the large, hairy, pad-like distal lobes of the maxillar galeae. Provided that current views on the evolutionary history of these beetles are correct, dung feeding has arisen independently in the Scarabaeidae, Geotrupidae and Hydrophilidae. If so, the feeding on very small particles and the concomitant modifications of mouthparts in these three groups must be results of parallel evolution.
The larvae of Lype phaeopa (Stephens, 1836) are found on dead wood substrates in streams and lakes. Gut content analyses, scanning electron microscopy of larval mouthparts, and gallery structure revealed characteristics of this habitat preference. The guts of the larvae contained mainly wood fragments whereas other food items (detritus, algae, fungi, inorganic particles) were much rarer. The suitability of the mouthparts to scrape wood surfaces, and the adaptative elongation of the silk-secreting spinneret, which facilitates the construction of retreats consisting of a tunnel-like silken net incorporating mainly wood fragments, are discussed. Retreat-construction under laboratory conditions indicated that larvae exploit new feeding areas by steadily extending their galleries. Tips of the maxillary palps bear five sensilla styloconica and five sensilla basiconica, almost all bearing an apical pore. Three sensilla styloconica, two with an apical peg, and two small inconspicious sensilla basiconica are located on the galea. Possible function of these sensilla is discussed on the basis of studies on the closely related sister-group of Lepidoptera.
The Pselaphinae is a large subfamily of staphylinid beetles with a characteristic habitus and small body size. Detailed morphological and behavioural studies on these beetles are scarce. In this study, specimens of Bryaxis puncticollis (Denny, 1825), Bryaxis bulbifer (Reichenbach, 1816), Bythinus burrelli (Denny, 1825), Brachygluta fossulata (Reichenbach, 1816), Rybaxis longicornis (Leach, 1817), Pselaphus heisei (Herbst, 1792) and Tyrus mucronatus (Panzer, 1803), all collected in Northern Germany, have been examined with regard to their sensory organs (eyes and antennae), mouthparts and method of capturing prey. Scanning electron microscope studies revealed sex-specific differences in the numbers of ommatidia in Bryaxis puncticollis. A multitude of different sensilla on the antennae and great differences in the shape of the mouthparts were observed and peculiarities of the antennae and maxillary palps (e.g., the segment-like appendage) were examined using scanning and transmission electron microscopy. The prey-capture behaviour of these species is described in detail for the first time based on laboratory experiments using Heteromurus nitidus (Templeton, 1835) (Collembola) as prey. This behaviour seems to be tribe specific, ranging from simple seizure with the mandibles (e.g., Rybaxis longicornis, tribe Brachyglutini) to the employment of raptorial legs (Tyrus mucronatus, tribe Tyrini). The two Bryaxis species (tribe Bythinini) even employ their apparently sticky maxillary palps to capture prey. The assumption that a viscous secretion is used by these species is supported by the finding of glandular structures in the interior of their maxillary palps. Prey-capture is preceded by a complicated preparation phase in most of the species and followed by a sequence of prey-handling movements that seem to be adapted to restrain prey such as Collembola. In simple prey-choice experiments the beetles of several species preferred small prey, irrespective of their own body size. In these experiments, Bryaxis bulbifer and Brachygluta fossulata were more successful in capturing prey than Bryaxis puncticollis and Pselaphus heisei. This might be related to their different sensory equipment and different methods of capturing prey.