Let K be a field, A = K[X1, . . . , Xn] and M the set of monomials of A. It is well known that the set of monomial ideals of A is in a bijective correspondence with the set of all subsemiflows of the M-semiflow M. We generalize this to the case of term ideals of A = R[X1, . . . , Xn], where R is a commutative Noetherian ring. A term ideal of A is an ideal of A generated by a family of terms cXµ1 1 . . . Xµn n , where c ∈ R and µ1, . . . , µn are integers ≥ 0.
Let a \subseteq \mathbb{C} [x1, ..., xn] be a monomial ideal andJ(a^{c}) the multiplier ideal of a with coefficient c. Then J(a^{c}) is also a monomial ideal of \mathbb{C} [x1, ..., xn], and the equality J(a^{c}) = a implies that 0 < c < n + 1. We mainly discuss the problem when J (a) = a or J({a^{n = 1 - \varepsilon }}) = a for all 0 < ε < 1. It is proved that if J (a) = a then a is principal, and if J({a^{n = 1 - \varepsilon }}) = a holds for all 0 < ε < 1 then a = (x1, ..., xn). One global result is also obtained. Let ã be the ideal sheaf on \mathbb{P}^{n-1} associated with a. Then it is proved that the equality J (ã) = ã implies that ã is principal., Cheng Gong, Zhongming Tang., and Obsahuje seznam literatury
Let $\Delta_{n,d}$ (resp. $\Delta_{n,d}'$) be the simplicial complex and the facet ideal $I_{n,d}=(x_1\cdots x_d,x_{d-k+1}\cdots
x_{2d-k},\ldots,x_{n-d+1}\cdots x_n)$ (resp. $J_{n,d}=(x_1\cdots x_d,x_{d-k+1}\cdots x_{2d-k},\ldots,x_{n-2d+2k+1}\cdots x_{n-d+2k},x_{n-d+k+1}\cdots x_nx_1\cdots x_k)$). When $d\geq2k+1$, we give the exact formulas to compute the depth and Stanley depth of quotient rings $S/J_{n,d}$ and $S/I_{n,d}^t$ for all $t\geq1$. When $d=2k$, we compute the depth and Stanley depth of quotient rings $S/J_{n,d}$ and $S/I_{n,d}$, and give lower bounds for the depth and Stanley depth of quotient rings $S/I_{n,d}^t$ for all $t\geq1$., Xiaoqi Wei, Yan Gu., and Obsahuje bibliografické odkazy