Using unitary dilations we give a very simple proof of the maximal inequality for a stochastic convolution \[ \int ^t_0 S(t-s)\psi (s)\mathrm{d}W(s) \] driven by a Wiener process $W$ in a Hilbert space in the case when the semigroup $S(t)$ is of contraction type.
Assume that $X$, $Y$ are continuous-path martingales taking values in $\mathbb R^\nu $, $\nu \geq 1$, such that $Y$ is differentially subordinate to $X$. The paper contains the proof of the maximal inequality $$ \|\sup _{t\geq 0} |Y_t| \|_1\leq 2\|\sup _{t\geq 0} |X_t| \|_1. $$ The constant $2$ is shown to be the best possible, even in the one-dimensional setting of stochastic integrals with respect to a standard Brownian motion. The proof uses Burkholder's method and rests on the construction of an appropriate special function.