This case study presents the verification of two surface subsidence prediction models for longwall mining at depths greater than 400 m. The surface subsidence points were surveyed and compared for both models. The first model uses empirical calculations to predict the surface subsidence. This method is reliable for predicting surface subsidence at shallower depths. At present, however, coal mining has progressed to great depths. The second model is the 2-dimensional finite element method to predict surface subsidence. In contrast to the first method, this method is based on the regional parameters and uses the rock mass properties to evaluate surface subsidence for multi-seams at any depth. Results show that the finite element method gives a better approximation of the measured surface subsidence than the Knothe method. The maximum surface subsidence, which was determined by the FEM method, was used to adjust the extraction coefficient in the Knothe's method. The predicted value differs from the measured value by 8 %. The slope of the predicted subsidence trough was within the range of 2‒8 % from the surveyed subsidence. This case study proposes a procedure for using both models to successfully predict the surface subsidence.
The technique of assessing the failure of rigid overlying strata is applicable to deep mining with thick coal seams (a thickness of more than 1 m in the Ostrava-Karvina Coalfield), and in one case to longwall mining with controlled caving. The assessment of failure of rigid overlying strata makes it possible to distinguish whether the rigid overlying strata of rocks has been deformed or whether a strutting arch has been formed over the goaf below which is an area that is free from stress. Good knowledge of the mining, technical and geological conditions of a given site is a prerequisite for successful evaluation. There are advantages to utilising surface measurements for interpreting the effects of changes in rock mass, especially in areas of high overlying strata. The practical importance of failure assessment of overlying strata consists in determining the size of the mined-out area where the deformation of the rigid overlying strata occurred, which is dependent on the character of the rock mass. This paper is set in the context of the expected width of the goaf during deformation of rigid overlying strata within parameters that describe the mining and geological conditions of the locality. Changes in the area of the goaf, based the results of tensometric measurements, will also be placed in context., Eva Jiránková, Lubomír Staš, Vlastimil Kajzar and Hana Doležalová., and Obsahuje bibliografii