To investigate lisinopril effect on the contribution of nitric oxide (NO) and KCa channels to acetylcholine (ACh)-induced relaxation in isolated mesenteric arteries of spontaneously hypertensive rats (SHRs). Third branch mesenteric arteries isolated from lisinopril treated SHR rats (20 mg/kg/day for ten weeks, SHR-T) or untreated (SHR-UT) or normotensi ve WKY rats were mounted on tension myograph and ACh concentration-response curves were obtained. Westernblotting of eNOS and K Ca channels was performed. ACh-induced relaxations were similar in all groups while L-NMMA and indomethacin caused significant rightward shift only in SHR-T group. Apamin and TRAM-34 (SKCa and IKCa channels blockers, respectively) significantly attenuated ACh-induced maximal relaxation by similar magnitude in vessels from all three groups. In the presence of L-NMMA, indomethacin, apamin and TRAM-34 further attenuated ACh-induced relaxation only in SHR-T. Furthermore, lisinopril treatment increased expression of eNOS, SKCa and BKCa proteins. Lisinopril treatment increased expression of eNOS, SKCa , BKCa channel proteins and increased the contribution of NO to ACh-mediated relaxation. This increased role of NO was apparent only when EDHF component was blocked by inhibiting SKCa and IKCa channels. Such may suggest that in mesenteric arteries, non-EDHF component functions act as a reserve system to provide compensatory vasodilatation if (and when) hyperpolarization that is mediated by SKCa and IKCa channels is reduced, S. Albarwani, S. Al-Siyabi, I. Al-Husseini, A. Al-Ismail, I. Al-Lawati, I. Al-Bahrani, M. O. Tanira., and Obsahuje bibliografii
The aim of this work was to investigate the effect of 10 weeks of lisinopril treatment to spontaneously hypertensive rats (SHRs) on day/night variations of blood pressure, heart rate and autonomic cardio-regulation parameters. Male SHR with surgically implanted radio-telemetry implant that provided direct measurements of arterial pressure and electrocardiogram wave were used. Animals were allocated to two groups (n=5 each). The first group was treated with lisinopril (20 mg/kg by gavage) daily for 10 weeks (treated group); whereas the second was gavaged daily with tap water (untreated group). Arterial blood pressure, ECG and other telemetry parameters were recorded at the start and at the end of 10-week treatment. Collected data were analyzed using specialized software and were statistically tested. In addition to the expected lowering of blood pressure, spectral analysis of R-R intervals revealed that lisinopril treatment for 10 weeks significantly caused 2-3 fold increase in heart rate variability (HRV) during both active and inactive periods. However, R-R interval durations demonstrated variable distribution patterns during those periods. The cause of observed distribution pattern of R-R intervals during active and inactive periods may be of significance to better understand HRV changes and warrants further investigations., S. Albarwani, S. Al-Siyabi, M. O. Tanira., and Obsahuje seznam literatury