Let $G$ be a finite group and $\pi _{e}(G)$ be the set of element orders of $G$. Let $k \in \pi _{e}(G)$ and $m_{k}$ be the number of elements of order $k$ in $G$. Set ${\rm nse}(G):=\{m_{k}\colon k \in \pi _{e}(G)\}$. In fact ${\rm nse}(G)$ is the set of sizes of elements with the same order in $G$. In this paper, by ${\rm nse}(G)$ and order, we give a new characterization of finite projective special linear groups $L_{2}(p)$ over a field with $p$ elements, where $p$ is prime. We prove the following theorem: If $G$ is a group such that $|G|=|L_{2}(p)|$ and ${\rm nse}(G)$ consists of $1$, $p^{2}-1$, $p(p+\epsilon )/2$ and some numbers divisible by $2p$, where $p$ is a prime greater than $3$ with $p \equiv 1$ modulo $4$, then $G \cong L_{2}(p)$.
We compute the central heights of the full stability groups S of ascending series and of descending series of subspaces in vector spaces over fields and division rings. The aim is to develop at least partial right analogues of results on left Engel elements and related nilpotent radicals in such S proved recently by Casolo & Puglisi, by Traustason and by the current author. Perhaps surprisingly, while there is an absolute bound on these central heights for descending series, for ascending series the central height can be any ordinal number., Bertram A. F. Wehrfritz., and Obsahuje seznam literatury