The foraging behaviour of beneficials such as aphidophagous predators depend largely on volatile compounds emitted by potential preys. Even if polyphagous predatory species are considered, all the potential preys are not systematically localised and accepted. In this work, chemical cues from different aphids and plants, each alone or in association, were studied to elucidate their role in prey location. Using a four-arm olfactometer, attraction of combinations of three aphid (Megoura viciae, Acyrthosiphon pisum and Aphis fabae) and one plant (Vicia faba) species for Episyrphus balteatus larvae was observed. Predatory hoverfly larvae were attracted by all tested stimuli in the presence of aphids, whatever the species. Whole or crushed aphids and also aphids on bean plant parts were attractive to syrphid larvae, but the host plant alone did not present any infochemical role for E. balteatus. Identification and quantification of the volatile releases from aphid and plant species, alone or in association, were performed using SPME and GC-MS methods. Aphid alarm pheromone, (E)-β-farnesene, was found in the volatile pattern of each aphid and was tested for its role as an effective kairomone for the hoverfly.
Previous work suggests that submergence of Lycaena dispar larvae during overwintering may play a significant role in this butterfly's population dynamics. Since potential re-introduction sites in eastern England are prone to regular seasonal flooding, we further studied the species' submergence tolerance with a view to formulating management protocols conducive to larval survivorship under periodic flood conditions. Simulated flooding regimes using captive-reared larvae showed that enforced submergence has a twofold effect: firstly, a direct increase in mortality after 28 days under water and, secondly, a longer term, post-diapause increase in mortality; manifest either as an inability of larvae to resume feeding, or a failure to complete development. Additionally, there was a marked difference in the response of "early" and "late" diapause larvae; the latter generally succumbing after shorter periods under water, and suffering higher total mortalities. Behavioural investigations suggest that, if afforded the opportunity, diapausing larvae can evade submergence by climbing onto the exposed sections of partially flooded host plants. Significantly, survival on partially flooded plants was found to be comparable to that on unflooded controls. Further re-introductions of L. dispar in the U.K. will probably necessitate a direct translocation of wild Dutch stock. As the flood tolerance of this source population remains largely undetermined, and given that re-introduction site hydrology will be generally unamenable to conservation-oriented manipulation, it is recommended that restoration management be directed towards creating structural diversity in the vegetation of overwintering habitats, thereby providing potential "flood refugia" for hibernating larvae.
Size-frequency data were collected for two rheophilic fish species, Cottus perifretum and Leuciscus cephalus, at the confluences of 18 lowland tributaries along the regulated River Meuse (the Netherlands) between May 2004 and April 2005. Cottus perifretum is a resident species, using these stream mouth habitats throughout its entire life: i.e. as a spawning, nursery and adult habitat. Leuciscus cephalus is a transient species that uses these stream mouth habitats only as a temporary 0+ juvenile habitat during fall and early winter. This study suggests that the stream mouth habitats along the River Meuse fulfil different ecological functions for C. perifretum and L. cephalus.
The fresh weight, dry weight, and C and N content of the eggs, egg shells and neonate larvae of several satyrines were measured. This was done in order to assess the specificity of the composition of the egg and larvae, the phylogenetic or ecological nature of the variation and the existence of structural constraints on the composition of the offspring. All the traits investigated were found to be highly species-specific. The nature of the variation was not primarily phylogenetic, suggesting that the composition of the offspring has an ecological meaning. However, only a slight association was detected between three life history traits or habitat features and the compositions of the eggs or larvae, namely: female egg dropping was associated with a high C content of the eggs, xerophily with a high C : N ratio, and a high content of N in the larvae with egg diapause. The evidence for intra-specific allometry between the traits investigated and egg weight varied among the species, suggesting that the slope of such relationship may be a specific feature. There was a close to isometric relationship between C and N contents in every species. Therefore simple C : N ratios are independent of egg size, hence they can be used directly in comparative studies. Across species analyses indicated that small offspring contained a proportionally low amount of carbon and had a high dry matter content, suggesting that selection for small eggs was accompanied by selection for an enhanced proportion of nitrogen per egg. Finally, the species with large adult females invested comparatively more nitrogen per egg, which indicates a potential, constraint-based advantage of large adult size.