The number of larval moults, larval head capsule width and pupal weight were investigated in both direct-developing and diapausing individuals of a South-West European population of Coenonympha pamphilus. The frequency distributions of head widths of successive larval instars overlapped, partly due to variation in the number of larval moults. The larvae that entered diapause went through five instars, instead of the four reported from this species. The evidence indicates that the five instar developmental pathway represents a plastic response rather than an example of compensatory growth. This alternative growth pattern was expressed in response to short photoperiods in parallel with, or as a consequence of, larval diapause. On average, the larvae with five instars had larger heads than their normal siblings. This resulted in comparatively heavier male pupae, while the opposite trend occurred in females. It is concluded that the variation in the number of larval instars is a plastic response to diapause when temperatures remain mild and that it might have an adaptive value in areas with mild winter climates. The sexually dimorphic expression in the larval growth patterns, in terms of pupal weight, may well imply different patterns of allocation of larval resources to adult structures, although sex-dependent differences in investment into purely larval structures cannot be discounted.
The fresh weight, dry weight, and C and N content of the eggs, egg shells and neonate larvae of several satyrines were measured. This was done in order to assess the specificity of the composition of the egg and larvae, the phylogenetic or ecological nature of the variation and the existence of structural constraints on the composition of the offspring. All the traits investigated were found to be highly species-specific. The nature of the variation was not primarily phylogenetic, suggesting that the composition of the offspring has an ecological meaning. However, only a slight association was detected between three life history traits or habitat features and the compositions of the eggs or larvae, namely: female egg dropping was associated with a high C content of the eggs, xerophily with a high C : N ratio, and a high content of N in the larvae with egg diapause. The evidence for intra-specific allometry between the traits investigated and egg weight varied among the species, suggesting that the slope of such relationship may be a specific feature. There was a close to isometric relationship between C and N contents in every species. Therefore simple C : N ratios are independent of egg size, hence they can be used directly in comparative studies. Across species analyses indicated that small offspring contained a proportionally low amount of carbon and had a high dry matter content, suggesting that selection for small eggs was accompanied by selection for an enhanced proportion of nitrogen per egg. Finally, the species with large adult females invested comparatively more nitrogen per egg, which indicates a potential, constraint-based advantage of large adult size.