In this study, the FRIER rainfall-runoff model with distributed parameters was developed to assess changes in runoff and water balance due to changes in land use and climate. The water balance was calculated at 3 levels: on the surface and in unsaturated and saturated zones. Six basins from the central and eastern parts of Slovakia were selected on the basis of their similar size, but different topography, land use, soil texture and climate: the upper Hornád, the upper Hron, the Poprad, the Rimava, the Slaná and the Torysa River basins. Model parameters were estimated using data from the period from June 1998 to May 2000 in daily time steps. The differences and similarities of the hydrologic processes in individual basins were investigated during the calibration period. Several scenarios of changes in land use and two simple scenarios of changes in climate were developed to estimate the impact of these changes on water balance and runoff. The changes in the hydrological regime were compared and discussed. and V posledných rokoch sa veľmi často hodnotia a diskutujú vplyvy zmien využitia krajiny a klímy na procesy hydrologickej bilancie, aj keď miera ich vplyvu na hydrologický režim sa najmä pre komplexnosť týchto procesov veľmi ťažko kvantifikuje. Na odhad vplyvu zmien využitia krajiny a klímy na odtok a zložky hydrologickej bilancie bol vyvinutý zrážkovo-odtokový model FRIER s rozčlenenými parametrami. Na základe podobnej veľkosti, ale rôznej topografie, využitia krajiny a pôdnej štruktúry bolo vybraných šesť pilotných povodí: povodie horného Hornádu, horného Hrona, Popradu, Rimavy, Slanej a Torysy. Parametre modelu boli kalibrované pre obdobie jún 1998 - máj 2000 v dennom časovom kroku. Na základe simulácií hydrologickej bilancie pre súčasný stav sa hodnotili rozdiely a podobnosti procesov tvorby odtoku v jednotlivých povodiach. Odtok a zložky hydrologickej bilancie boli následne simulované pre sedem scenárov zmien využitia krajiny a dva jednoduché scenáre zmeny zrážok a teploty vzduchu. Zmeny odtoku a hydrologickej bilancie boli porovnané a diskutované.
Soil sealing is the permanent covering of the land surface by buildings, infrastructures or any impermeable artificial material. Beside the loss of fertile soils with a direct impact on food security, soil sealing modifies the hydrological cycle. This can cause an increased flooding risk, due to urban development in potential risk areas and to the increased volumes of runoff. This work estimates the increase of runoff due to sealing following urbanization and land take in the plain of Emilia Romagna (Italy), using the Green and Ampt infiltration model for two rainfall return periods (20 and 200 years) in two different years, 1976 and 2008. To this goal a hydropedological approach was adopted in order to characterize soil hydraulic properties via locally calibrated pedotransfer functions (PTF). PTF inputs were estimated via sequential Gaussian simulations coupled with a simple kriging with varying local means, taking into account soil type and dominant land use. Results show that in the study area an average increment of 8.4% in sealed areas due to urbanization and sprawl induces an average increment in surface runoff equal to 3.5 and 2.7% respectively for 20 and 200-years return periods, with a maximum > 20% for highly sealed coast areas.
The lateral saturated hydraulic conductivity, Ks,l, is the soil property that mostly governs subsurface flow in
hillslopes. Determinations of Ks,l at the hillslope scale are expected to yield valuable information for interpreting and
modeling hydrological processes since soil heterogeneities are functionally averaged in this case. However, these data
are rare since the experiments are quite difficult and costly. In this investigation, that was carried out in Sardinia (Italy),
large-scale determinations of Ks,l were done in two adjacent hillslopes covered by a Mediterranean maquis and grass, respectively,
with the following objectives: i) to evaluate the effect of land use change on Ks,l, and ii) to compare estimates
of Ks,l obtained under natural and artificial rainfall conditions. Higher Ks,l values were obtained under the maquis than in
the grassed soil since the soil macropore network was better connected in the maquis soil. The lateral conductivity increased
sharply close to the soil surface. The sharp increase of Ks,l started at a larger depth for the maquis soil than the
grassed one. The Ks,l values estimated during artificial rainfall experiments agreed with those obtained during the natural
rainfall periods. For the grassed site, it was possible to detect a stabilization of Ks,l in the upper soil layer, suggesting that
flow transport capacity of the soil pore system did not increase indefinitely. This study highlighted the importance of the
experimental determination of Ks,l at the hillslope scale for subsurface modeling, and also as a benchmark for developing
appropriate sampling methodologies based on near-point estimation of Ks,l.