The process of manual species identification is a daunting task, so much so that the number of taxonomists is seen to be declining. In order to assist taxonomists, many methods and algorithms have been proposed to develop semi-automated and fully automated systems for species identification. While semi-automated tools would require manual intervention by a domain expert, fully automated tools are assumed to be not as reliable as manual or semi-automated identification tools. Hence, in this study we investigate the accuracy of fully automated and semi-automated models for species identification. We have built fully automated and semi-automated species classification models using the monogenean species image dataset. With respect to monogeneans’ morphology, they are differentiated based on the morphological characteristics of haptoral bars, an-chors, marginal hooks and reproductive organs (male and female copulatory organs). Landmarks (in the semi-automated model) and shape morphometric features (in the fully automated model) were extracted from four monogenean species images, which were then classified using k-nearest neighbour and artificial neural network. In semi-automated models, a classification accuracy of 96.67 % was obtained using the k-nearest neighbour and 97.5 % using the artificial neural network, whereas in fully automated models, a classification accuracy of 90 % was obtained using the k-nearest neighbour and 98.8 % using the artificial neural network. As for the cross-validation, semi-automated models performed at 91.2 %, whereas fully automated models performed slightly higher at 93.75 %. and Corresponding author: Sarinder Kaur A/p Kashmir Singh
Introduction: The dataset of 826 patients who were suspected of the prostate cancer was examined. The best single marker and the combination of markers which could predict the prostate cancer in very early stage of the disease were looked for. Methods: For combination of markers the logistic regression, the multilayer perceptron neural network and the k-nearest neighbour method were used. 10 models for each method were developed on the training data set and the predictive accuracy verified on the test data set. Results and conclusions: The ROCs for the models were constructed and AUCs were estimated. All three examined methods have given comparable results. The medians of estimates of AUCs were 0.775, which were larger than AUC of the best single marker.