Ivermectin acts as a positive allosteric regulator of several ligand gated channels including the glutamate-gated chloride channel (GluCl), γ-aminobutyric acid type-A receptor, glycine receptor, neuronal α 7-nicotinic receptor and purinergic P2X4 receptor. In most of the ivermect in-sensitive channe ls, the effects of ivermectin include the potentiation of agonist-induced currents at low concentrations and channel opening at higher concentrations. Based on mutagenesis, electrophysiological recordings and functional an alysis of chimeras between ivermectin-sensitive and ivermectin-insensitive receptors, it has been concluded that ivermectin acts by insertion between transmembrane helices. The three-dimensional structure of C. elegans GluCl complexed with ivermectin has revealed the details of the ivermectin-binding site, however, no generic motif of amino acids could accurately predict ivermectin binding site for other ligand gated channels. Here, we will review what is currently known about ivermectin binding and modulation of Cys-loop receptor family of ligand-gated ion channels and what are the critical structur al determinants underlying potentiation of the P2X4 receptor channel., H. Zemkova ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Important fetal and perinatal pathologies, especially intrauterine growth restriction (IUGR), are thought to stem from placental hypoxia-induced vasoconstriction of the fetoplacental vessels, leading to placental hypoperfusion and thus fetal undernutrition. However, the effects of hypoxia on the fetoplacental vessels have been surprisingly little studied. We review here available experimental data on acute hypoxic fetoplacental vasoconstriction (HFPV) and on chronic hypoxic elevation of fetoplacental vascular resistance. The mechanism of HFPV includes hypoxic inhibition of potassium channels in the plasma membrane of fetoplacental vascular smooth muscle and consequent membrane depolarization that activates voltage gated calcium channels. This in turn causes calcium influx and contractile apparatus activation. The mechanism of chronic hypoxic elevation of fetoplacental vascular resistance is virtually unknown except of signs of the involvement of morphological remodeling., V. Hampl, V. Jakoubek., and Obsahuje seznam literatury
NMDA receptors have received much attention over the last few decades, due to their role in many types of neural plasticity on the one hand, and their involvement in excitotoxicity on the other hand. There is great interest in developing clinically relevant NMDA receptor antagonists that would block excitotoxic NMDA receptor activation, without interfering with NMDA receptor function needed for normal synaptic transmission and plasticity. This review summarizes current understanding of the structure of NMDA receptors and the mechanisms of NMDA receptor activation and modulation, with special attention given to data describing the properties of various types of NMDA receptor inhibition. Our recent analyses point to certain neurosteroids as NMDA receptor inhibitors with desirable properties. Specifically, these compounds show use-dependent but voltage-independent block, that is predicted to preferentially target excessive tonic NMDA receptor activation. Importantly, neurosteroids are also characterized by use-independent unblock, compatible with minimal disruption of normal synaptic transmission. Thus, neurosteroids are a promising class of NMDA receptor modulators that may lead to the development of neuroprotective drugs with optimal therapeutic profiles., V. Vyklicky ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
This study aimed to investigate the vasoactivity of sulfur dioxide (SO2), a novel gas identified from vascular tissue, in rat thoracic aorta. The thoracic aorta was isolated, cut into rings, and mounted in organ-bath chambers. After equilibrium, the rings were gradually stretched to a resting tension. Isometric tension was recorded under the treatments with vasoconstrictors, SO2 derivatives, and various drugs as pharmacological interventions. In endothelium-intact aortic rings constricted by 1 μM phenylephrine (PE), SO2 derivatives (0.5 – 8 mM) caused a dose-dependent relaxation. Endothelium removal and a NOS inhibitor L-NAME reduced the relaxation to low doses of SO2 derivatives, but not that to relatively high doses (≥ 2 mM). In endothelium-denuded rings, SO2 derivatives attenuat ed vasoconstriction induced by high K+ (60 mM) or CaCl2 (0.01-10 mM). The relaxation to SO2 derivatives in PE-constricted rings without endothelium was significantly inhibited by blockers of ATP-sensitive K+ (KATP) and Ca2+-activated K+ (KCa) channels, but not by those of voltage-dependent K+ channels, Na+-K+-ATPase or Na+-Ca2+ exchanger. SO2 relaxed vessel tone via endothelium-dependent mechanisms associated with NOS activation, and via endothelium-independent mechanisms dependent on the inhibition of voltage-gated Ca2+ channels, and the opening of KATP and KCa channels., Y.-K- Wang., and Obsahuje seznam literatury