In this paper, we present a novel quantitative description of intracellular and t-tubular Ca2+ dynamics in a model of rat cardiac ventricular myocyte. In order to simulate recently published data, the model incorporates t-tubular and peripheral dyads and intracellular subspaces, segmentation of the t-tubular luminal volume, reformulation of the inactivation properties of t-tubular land peripheral L-type calcium current (ICa) and a description of exogenous Ca2q+ buffer function in the intracellular space. The model is used to explore activity-induced changes of ion concentration in the intracellular and t-tubular spaces and their role in excitation - contraction coupling in ventricular myocytes. and Obsahuje Appendix se seznamy literatury, užitých zkratek a symbolů