It is shown that if g is of bounded variation in the sense of Hardy-Krause on ∏m i=1 [ai , bi ], then gχ ∏m i=1 (ai ,bi ) is of bounded variation there. As a result, we obtain a simple proof of Kurzweil’s multidimensional integration by parts formula.
Integration by parts results concerning Stieltjes integrals for functions with values in Banach spaces are presented. The background of the theory is the Kurzweil approach to integration based on Riemann type integral sums, which leads to the Perron integral.
Results on integration by parts and integration by substitution for the variational integral of Henstock are well-known. When real-valued functions are considered, such results also hold for the Generalized Riemann Integral defined by Kurzweil since, in this case, the integrals of Kurzweil and Henstock coincide. However, in a Banach-space valued context, the Kurzweil integral properly contains that of Henstock. In the present paper, we consider abstract vector integrals of Kurzweil and prove Substitution Formulas by functional analytic methods. In general, Substitution Formulas need not hold for Kurzweil vector integrals even if they are defined.