Bone is a target tissue for hormones, such as the sex steroids, parathormon, vitamin D, calcitonin, glucocorticoids, and thyroid hormones. In the last decade, other “non-classic” hormones that modulate the bone tissue have been identified. While incretins (GIP and GLP-1) inhibit bone remodeling, angiotensin acts to promote remodeling. Bone morphogenetic protein (BMP) has also been found to have anabolic effects on the skeleton by activating bone formation during embryonic development, as well as in the postnatal period of life. Bone has also been identified as an endocrine tissue that produces a number of hormones, that bind to and modulate extra-skeletal receptors. Osteocalcin occupies a central position in this context. It can increase insulin secretion, insulin sensitivity and regulate metabolism of fatty acids. Moreover, osteocalcin also influences phosphate metabolism via osteocyte-derived FGF23 (which targets the kidneys and parathyroid glands to control phosphate reabsorption and metabolism of vitamin D). Finally, osteocalcin stimulates testosterone synthesis in Leydig cells and thus may play some role in male fertility. Further studies are necessary to confirm clinically important roles for skeletal tissue in systemic regulations., I. Zofkova., and Obsahuje bibliografii
Gestational diabetes mellitus (GDM) and polycystic ovary syndrome (PCOS) are distinct pathologies with impaired insulin sensitivity as a common feature. The aim of this study was to evaluate the response of fat tissue adipokines and gastrointestinal incretins to glucose load in patients diagnosed with one of the two disorders and to compare it with healthy controls. Oral glucose tolerance test (oGTT) was performed in 77 lean young women: 22 had positive history of GDM, 19 were PCOS patients, and 36 were healthy controls. Hormones were evaluated in fasting and in 60 min intervals during the 3 h oGTT using Bio-Plex ProHuman Diabetes 10-Plex Assay for C-peptide, ghrelin, GIP, GLP1, glucagon, insulin, leptin, total PAI1, resistin, visfatin and Bio-Plex ProHuman Diabetes Adipsin and Adiponectin Assays (Bio-Rad). Despite lean body composition, both PCOS and GDM women were more insulin resistant than controls. Significant postchallenge differences between the GDM and PCOS groups were observed in secretion of adipsin, leptin, glucagon, visfatin, ghrelin, GIP, and also GLP1 with higher levels in GDM. Conversely, PCOS was associated with the highest resistin, C-peptide, and PAI1 levels. Our data suggest that decreased insulin sensitivity observed in lean women with GDM and PCOS is associated with distinct hormonal response of fat and gastrointestinal tissue to glucose load., D. Vejrazkova, O. Lischkova, M. Vankova, S. Stanicka, J. Vrbikova, P. Lukasova, J. Vcelak, G. Vacinova, B. Bendlova., and Obsahuje bibliografii